目前大家采用的线圈炮都是采用高压电容蓄能,渐渐的采用高压做磁阻线圈已经变成常识。
高压具有蓄能大的优势,在额定电压下有很多可控硅型号可做选择,而对应的缺点也很明显:
1、来自高电压的危险,受潮、不小心触碰的危险系数都很大,这对业余diy作品不科学的作品包装来说可能一次犯错就足以致命。
2、效率控制成本高,可关断的芯片成本以及耐用性都存在问题 (近期的大量实验消耗了数百个不同型号IGBT足以证明,其中包括350A的IGBT)
3、线圈无法做到很少匝导致电感量过大,因为过大的电流足以烧毁开关元件
而目前很少有人触及的低压,可以克服上面的3个问题。
要做低压方案必须解决一个重要的问题:
整个能源通路环节各个器件内阻需要很低,整个通路内阻控制在20毫欧以内,其中蓄能源内阻尤其重要!
方案中采用了67个1000uf高频电容并联降低内阻,并再连8个22000uf电容做蓄能,整体蓄能243万微法。
解决了上面的问题,低压方案带来的附加优势就体现出来了,作为可关断的开关元件选择很多,方案中采用可承受800A电流的场效应,成本也就在2元左右。
比较有意思的对比,采集同样的实验数据,可能高压方案烧掉100次IGBT,低压方案中也未必出问题,实验了这么久才因为电压选择过高烧掉6个。
方案介绍:
线圈:
10级 每级36砸共3层 长度1.7cm,采用低内阻无氧铜线。
主控板:
芯片 12c5a60s2 线圈每级的开断控制(可复杂交错方式控制)、 内部集成可控高压方便测试IGBT耐压曲线、弹体速度采集、电压检测。。。
开关板:10级、场效应选用IRFB3206(可重复耐受800A峰值电流),驱动采用mic4417(比图腾柱高效很多)
速度采集板:
很小巧。直接固定在线圈出口
主蓄能源:
低内阻电容组,67个1000uf并联
备蓄能源:
8个22000大电容,由于内阻远大于上面67个小电容的组合,所以基本上的用处在于每级关闭的时候给主蓄能电容组快速充电
两颗0.96g的6mm钢珠同时发射,贯穿两个盒子
点击此处查看视频 实验采集的一些数据:(前面3级数据很稳定,第4级开始数据每次都会存在误差)
弹体质量:10.577克
电容量: 243000uf
蓄能电压: 27V
27V低压给电容组充电,实验采用长度43mm直径6mm的钢销,质量10.577克
线圈1 :
开启电压27V
关闭电压22.9V
出口速度17.27m/s
线圈2:开启电压22.9V关闭电压21.9V出口速度25.40m/s线圈3:
开启电压21.9V
关闭电压20.9V
出口速度36.16m/s
第4级开始的数据没有代表性,后面多级都是为了稳定速度
最终
其中有个很有意思的现象,级别越往后效率越高,但是这个效率可正可负,一旦前面数据有些异常,后级回拉的效率也特别明显,估计后面一级最高能回拉掉8成的动能
200字以内,仅用于支线交流,主线讨论请采用回复功能。