摘要
行波加速的特点在于
1、 线圈沿轴向的方向更短,密度更高
2、 同时存在多个线圈同时处于通电状态
行波加速的优点主要在于全程可以维持一个较高的磁场梯度,加速效率高(也就是说动子的加速度大,可以在更短的距离加速到更高的速度),能量效率高。而由于行波加速中,线圈同时通电和线圈密度较高的特性,使得行波加速中,线圈与线圈之间的磁耦合不能忽略,这使得以往的仿真工具并不完全能适用于行波加速。
本文提出了一种行波加速仿真的工作流,对优化行波加速器的设计具有一定指导意义
行波加速典型结构
行波加速的典型结构如图所示。磁场随着动子移动,牵引动子加速。随着磁场向前移动,场能也向前转移。转移渠道有两条,一条是直接通过线圈间的磁耦合传输,另一条是通过导线转化为电能后传输。
能量传输的时序和方向由电路控制,这个电路至少要具备以下功能
1、 从电源总线取能量给线圈充电
2、 将线圈能量反馈给电源总线
一个典型的电路设计如图所示
仿真中的近似
本仿真最重要的几条近似如下:
1、 磁饱和近似,即动子处于磁饱和状态,磁化强度在整个加速过程中保持不变。
2、 绝缘动子假定,即由于磁场变化在动子中产生的涡流忽略不计
3、 线圈性质时不变假定:忽略线圈导线中由于趋肤效应导致的线圈电阻随时间的时变(但可以不忽略趋肤效应本身导致的线圈阻抗增加,可以仅仅考虑时间平均后的效果)
仿真流程
一、输入参数确定
线圈、定子几何尺寸确定,材料确定,级数确定
开关器件最大荷载能量确定,开关时间确定(或忽略)
主电容器容量及电压确定
定子初速度确定(也可为0,但不推荐,过低的初速度对行波加速的能量传输过程极为不利,将大大降低总能量效率)
二、中间参数计算
根据线圈尺寸计算出单匝情况下的线圈电感、相邻线圈互感,线圈电阻
根据线圈尺寸和动子尺寸材料,计算出单位电流单匝情况下,动子处于不同位置时,所受线圈的磁场力大小(仅需计算从线圈开始到关断时,动子可能存在的位置范围内情况)
三、时域迭代
根据电路模型建立差分方程,时域上求解方程计算出整个加速过程。
其中,有两部分内容是需要在仿真中根据设计目标进行迭代优化的。
1、 线圈的匝数参数。该参数决定了线圈的实际电感、互感、电阻等,最终会直接影响到峰值电流等参数,难以在计算前确定,需要根据仿真结果进行调整和优化
2、 线圈开启策略。该策略包含线圈何时充电、何时放电、是否进行续流等内容,不同的策略也会对最终结果造成影响。
仿真案例
一、输入参数确定
线圈和定子的几何尺寸如图所示
线圈材质为无氧铜,圆导线密绕,因此等效电阻率为$\rho_{eff}=\rho_{copper}\times\frac{4}{\pi}=2.16\times10^{-8}\Omega m\qquad(20^{\circ}C)$
磁芯材质为40钢(调质),根据《常用钢材磁特性曲线》p23,近似取饱和磁场强为2.0T。根据几何尺寸,可以计算出动子质量为6.31g
本案例中设定加速级数为40。
开关器件选用IPB60R040C7,耐压650V,脉冲电流限制211A,计算时限制电流不超过200A,开通内阻$40m\Omega$
使用电容作为供电电源,供电电压为400V,容量为4.7mF。
定子初速度设定为30m/s。
二、中间参数计算
可以计算出,对于单匝线圈,有线圈自感为0.9646nH,互感系数为0.3739nH,电阻为18.02μΩ
接着,计算定子位移与受力的关系,结果如下图所示
可以通过该关系通过插值方法得到位置/受力关系,也可以寻找一个合适的拟合方程。比如对于上面得到的结果,可以得到一个近似的拟合公式:$F=\frac{0.893\cdot x}{1+0.637\cdot(x/10)^{4.92537}}$
拟合效果如下图所示:
ratio图上仍有少量趋势,但是总体结果足以满足本计算的需求。
时域方程建立
对于两个同时通有电流的线圈和一个动子的情况,结合第一部分描述的电路原理图,根据基尔霍夫电压定律可以建立线性方程组如下:
$$-L_1 \frac{di_1}{dt}-M_{12} \frac{di_2}{dt}-i_1 (R_{coil1}+2 R_{Mos})+Switch_1\cdot V_{pow} + (Switch_1-1) \cdot V_{dio} - V_{b1} = 0$$
$$ -L_2 \frac{di_2}{dt}-M_{12} \frac{di_1}{dt}-i_2 (R_{coil2}+2 R_{Mos})+Switch_2\cdot V_{pow} + (Switch_2-1) \cdot V_{dio} - V_{b2} = 0$$
其中Switch表示开关状态,1表示正向充电,0表示续流,-1表示反向回收,$V_{pow}$为电源电压,$V_{b}$表示动子产生的感应电动势,有该电动势为
$$V_b = N \cdot v_{b}F_{bs}(\vec{r}-\vec{r_{coil}})$$
其中$N$为线圈匝数,$v_b$为动子速度,$F_{bs}(\vec{r})$为当前位置下,动子每单位线圈电流收到的力
我们在前面计算了单匝线圈的电感、互感和电阻,我们可以计算出他们和和多匝线圈之间的参数关系,有:
$$L=L_s\cdot N^2$$
$$M_{12} = M_{12s}\cdot N_1\cdot N_2$$
$$R=R_s \cdot N^2$$
其中$L_s、M_{12s}、R_s$,分别为单匝线圈的电感、互感和电阻。带入前方程可以得到:
$$-N_1^2 L_s \frac{di_1}{dt}-N_1 N_2 M_{12s} \frac{di_2}{dt}-i_1 (N_1^2 R_s+2 R_{Mos})+Switch_1\cdot V_{pow} + (Switch_1-1) \cdot V_{dio}- V_{b1}= 0$$
$$-N_2^2L_s \frac{di_2}{dt}-N_1 N_2 M_{12} \frac{di_1}{dt}-i_2 (N_2^2R_s+2 R_{Mos})+Switch_2\cdot V_{pow} + (Switch_2-1) \cdot V_{dio}- V_{b2} = 0$$
对于电源部分,也可以建立一个方程,有:
$$V_{pow}-U+(Swithc_1\cdot i_1+Switch_2\cdot i_2)\cdot R_{pow}=0$$
其中$V_{pow}$为电源输出电压,$U$为电源电动势,$R_{pow}$为电源内阻
如果电源为电容器,则再加上电容的放电方程,即
$$C\frac{dU}{dt}+(Swithc_1\cdot i_1+Switch_2\cdot i_2)=0$$
最后是动子的运动方程:
$$m\frac{dv}{dt}-N_1i_1\cdot F_{bs}(\vec{r}-\vec{r_{coil_1}})-N_2i_2\cdot F_{bs}(\vec{r}-\vec{r_{coil_2}}) = 0$$
$$\frac{dr}{dt}-v=0$$
联立上述方程组,我们得到关于$i_1,i_2,U,V_{pow},r,v$六个量的六个方程。
求解该方程组时,首先需要先通过解线性方程的方法,求解出六个未知量的导数,这样就得到了未知量导数和当前时间以及未知量值的关系,然后就可以使用RK4或别的方法求解线性方程。
对于本算例,由于忽略了MOS的开关效益和寄生的电容电阻等效应,加上线性度较高,因此可以使用RK4稳定求解。也许在加入了复杂电路模型后,可能会涉及到隐式方法求解该方程组。
排除开动子产生的感应电动势效应,方程的剩余部分可以轻松的用SPICE求解,但受限于笔者能力,没能成功将动子运动的模型加入到SPICE当中。如果能够利用SPICE求解,则省去了撰写隐式微分方程求解器的工作,并且可以分析更为复杂的寄生效应和更复杂的拓扑。
计算结果
设置线圈在定子距离-16mm时充电,距离-8mm时回收,不进行续流。线圈匝数为180匝-2*级数(越往后匝数越小)
仿真结果如图所示:
第一行为每个线圈的独立电流,通过逐级减少的线圈匝数使得线圈电流峰值近似保持在开关元件所能承受的最大电流范围之内。同时可以注意观察到由于磁耦合产生的电流上升拐点:拐点前,前级关断中的线圈将一部分能量直接耦合到下一级线圈,使得下一级线圈充电速度变快。拐点后,前级线圈中能量耗尽,电流上升完全从电容器中获取能量。
第二行为线圈的中的总磁能,可以看出线圈中始终维持了一定的磁能,但是存在一定波动。随着动子速度的不断增加,受限于开关器件的功率等级,系统中能维持的磁能也在下降。
第三行为电容器中的电压,基本呈现出均匀下降的趋势,可以明显看出由于能量回收产生的波动。行波加速的非常适合使用单个大电容,同时对电容的ESL要求也大大降低。并联电容的另一大好处是大大降低了ESR,减少了电容中的损耗。
第四行为动子速度,可以看出其加速度和系统的总磁能有明显的正相关。通过磁压强的概念,物理上可以证明两者的关系。动子速度从30m/s提升到了120m/s,获得42.8J能量,效率为40.8%,而加速距离仅为16cm。
行波加速使得磁场集中在更为高效的加速位置,提高了能量效率。
总结
本文介绍了行波加速的基本仿真思路,该思路也可以推广到感应加速等加速方式中去;通过一个典型的计算案例描述了计算的基本步骤,并且通过计算结果表明了行波加速的独特优势。希望通过此文抛砖引玉,引起对行波加速的更多思考。
200字以内,仅用于支线交流,主线讨论请采用回复功能。