加载中
加载中
表情图片
评为精选
鼓励
加载中...
分享
加载中...
文件下载
加载中...
修改排序
加载中...
State-of-the-art Image Segmentation Method(with demo)
Cirno2016/07/15软件综合 IP:美国

Conditional Random Fields as Recurrent Neural NetworksZ
web demo:http://www.robots.ox.ac.uk/~szheng/crfasrnndemo

Repost:
Our work allows computers to recognize objects in images, what is distinctive about our work is that we also recover the 2D outline of the object.

Currently we have trained this model to recognize 20 classes. The demo below allows you to test our algorithm on your own images – have a try and see if you can fool it, if you get some good examples you can send them to us.

Why are we doing this? This work is part of a project to build augmented reality glasses for the partially sighted. Please read about it here smart-specs.

This demo is based on our ICCV 2015 paper Conditional Random Fields as Recurrent Neural Networks, which utilizes deep learning techniques and probabilistic graphical models for semantic image segmentation. [PDF][ Project] [Group] [Code] This demo website won best demo award in ICCV 2015.

来自:计算机科学 / 软件综合
0
新版本公告
~~空空如也

想参与大家的讨论?现在就 登录 或者 注册

所属专业
所属分类
上级专业
同级专业
Cirno
专家 进士 老干部 学者 机友 笔友
文章
34
回复
359
学术分
2
2012/09/03注册,2个月3天前活动

Machine Learning, computer vision enthusiast

Google

主体类型:个人
所属领域:无
认证方式:手机号
IP归属地:未同步
插入公式
评论控制
加载中...
文号:{{pid}}
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

笔记
{{note.content}}
{{n.user.username}}
{{fromNow(n.toc)}} {{n.status === noteStatus.disabled ? "已屏蔽" : ""}} {{n.status === noteStatus.unknown ? "正在审核" : ""}} {{n.status === noteStatus.deleted ? '已删除' : ''}}
  • 编辑
  • 删除
  • {{n.status === 'disabled' ? "解除屏蔽" : "屏蔽" }}
我也是有底线的