看来lz对LATEX的使用不太熟啊,分数的代码是\frac{}{},能用分数的就别打个斜杠了。
文中可以这么写:
p+ρgh+\frac{1}{2}ρv^2=C
$$p+ρgh+\frac{1}{2}ρv^2=C$$
\sqrt{\frac{2G}{Sρ}+v}=v_2
$$\sqrt{\frac{2G}{Sρ}+v}=v_2$$
(2年前就已经在科创潜水了,当时更多在关注火箭版,无奈没有制作火箭的条件,只能跑到这里来了,反正不管航模还是火箭,只要能飞的我都感兴趣)
第一篇文章,不知道有没有人发过重复内容如有错误或重复请指出或刪除
我知道大部分人都用模拟软件来设计航模,但作为贫穷的学生党,我连电脑都没有,于是想出了下面的主意来设计机翼。
在伯努力定理中,1/2ρv*2为动能,ρgh为重力势能, p为压力势能
$$p+\rho gh+1/2\rho v^{2}=C$$ $$p_{2}+\rho gh+1/2\rho v_{2}^{2}=C$$
C为常数,p为机翼上方压强,p2为机翼下方压强,v为机翼下方气流速度(飞机速度),v2为机翼上方气流速度,G为飞机总重,S为机翼下表面面积(待会儿详细说),ρ为空气密度,v2大于v大于0,p2大于p,則可得
$$p+\rho gh+1/2\rho v^{2}=p_{2}+\rho gh+1/2\rho v_{2}^{2}$$
移项并合并
$$p-p_{2}=1/2\rho (v_{2}^{2}-v^{2})$$
其中$p-p_{2}$即为$\Delta p$
对应的,$\Delta p=G/S$
所以最终变形为
$$\sqrt{2G/S\rho+v}=v_{2}$$
将自己航模的参数代入(G,S),空气密度代入($1.29kg/m^{3} $ ),就得到一个函数,在函数中取的v,v1值的差即为气流走过的路程差,也相当于机翼上下面积差,这样就能设计机翼上表面了.
另外,机翼下表面默认为平面,计算时代入的G是设计之前的总重,也就是说机翼这部分的重量计算时得考虑一下(其实影响也不大)。S本來应该是机翼中部截面面积(如图),但我觉得换成下表面的话也一样
下面举个例子:某初三学生制作了一台矩形翼简单航模,测得G =2 N,S =0.12$m^{2}$,而空气密度为$1.29kg/m^{3}$他就能得到$$\sqrt{25.839+v}=v_{2}$$
函数图像就是这样的(绿的是取值范围)
取v值为5.54m/s,则v2值为5.6017m/s
上下翼面截面长度差为6.17厘米.
这种方法靠不靠谱我还不太了解,不过凑合用还是可以的。
另外也顺便得出了飞机飞行速度为5.54米每秒,然后就该考虑动力系统了^
[修改于 11天19时前 - 2024/10/20 15:03:29]
看来lz对LATEX的使用不太熟啊,分数的代码是\frac{}{},能用分数的就别打个斜杠了。
文中可以这么写:
p+ρgh+\frac{1}{2}ρv^2=C
$$p+ρgh+\frac{1}{2}ρv^2=C$$
\sqrt{\frac{2G}{Sρ}+v}=v_2
$$\sqrt{\frac{2G}{Sρ}+v}=v_2$$
糾正一下文中公式,$$\sqrt{\frac{2G}{Sρ}+v^2}=v_2$$
时段 | 个数 |
---|---|
{{f.startingTime}}点 - {{f.endTime}}点 | {{f.fileCount}} |
200字以内,仅用于支线交流,主线讨论请采用回复功能。