LED照明知识(第二部分):降压结构的实现
mass_lynnxy2008/10/16电子技术 IP:四川
作者:Sameh Sarhan
中压/高压电源管理的应用工程师
Chris Richardson
中压和高压应用工程师
国家半导体
在文章的第一部分,我们研究了基本的LED光源和驱动方式。介绍了一些简单的驱动方式,例如电压源/限流电阻的方式和线性稳压电源方式,但LED光源的功率需求和复杂程度的不断增加,使得这些简单的驱动方式已经不在能满足要求。这样就需要一种更加高级开关模式的LED驱动。那到底我们选择用什么样的开关方式呢?在第二部分,我们将探讨为什么开关模式的LED驱动用恒流降压电路表现最好,或者换种说法,为什么要用降压模式?
随着LED的广泛应用,在很多地方线性电源这种简单的结构已经不能满足需求。一般情况下,当用电阻的方式设定LED所需的正向电流的时候,这种简单的驱动方式可以连续的由电源向负载提供能量。由于LED的电流与电阻上的相同,所以电阻上产生的功耗会随输入电压的增加而增加。例如,一个用线性电源驱动的LED,效率为70%,用5V线性电源提供1A电流给一个典型的白光InGaN LED (VF = 3.5V)。在相同的工作条件下,当输入电压上升到12V时,它的效率将会降到30%。在如此低效率的情况下是无法应用的。
开关电源
开关电源改善了由于输入变化使得效率变化比较大的问题。这种方式是通过控制占空比的方式来满足输出所需要的电压或电流。由于开关电源会产生脉冲式的电压和电流,所以这就需要用一些储能器件(电感或电容)对这些脉冲波形进行整形。和线性电源相反,开关电源可以通过不同的设置来实现电流或电压的降、升或者同时升降的功能。开关电源同样可以在宽的输入或输出范围下实现高效率。在前面的例子中,用一个降压型的开关电源取代线性电源后,当输入电压由5V变到12V后,电路的效率由95%变到98%。
开关电源在效率和结构的灵活性上得到了很大的提升,但由于周期性的开关造成了噪声的增加,同时由于结构的复杂使得电路的可靠性下降和成本的上升。恒流型LED电路可以被简单的认为是一个恒流源。拓扑结构的选择应该考虑最少的外部原件和最好的性能为标准,这样可以提高电路的稳定性和减少成本。鉴于LED的动态调光特性好,在设计的时候要考虑使这种特性能够方便应用。幸运的是,基本降压开关电路在实现这些特性的时候表现的非常好,所以LED驱动一般选择降压型开关电源。
恒流输出级
开关调整器最常用的是电压调整器。图1a为一种基本恒压型降压调整器。降压控制器可以在输入电压变化的情况下,通过控制占空比或频率的变化使输出电压保持恒定。输出所需的电压由下面的公式计算得到(Eq. 1)

37_161_1015717839.jpg
式1


37_161_1381245198.jpg
图1a:基本降压型电压调整器。

电感L用来设置电感电流纹波的峰-峰值ΔIpp的大小,电容Co用来设置输出电压纹波和输出电压的负载瞬态响应。在这种降压型逆变器中电感的平均电流等于负载电流,因此我们可以通过控制电感电流纹波的峰-峰值来控制负载电流。这样可以使电压源控制的方式转换成电流源控制的方式。图1b为一种基本电流型降压调整器。与恒压型相似,恒流型降压调整器可以在输入电压变化的情况下,通过控制占空比或频率的变化使输出电流IF保持恒定。输出所需的电流由下面的公式计算得到(Eq. 2):

37_161_1133426433.jpg
式2


37_161_1409752552.jpg
图1b:基本电流型降压调整器。

在我们设定好LED电流IF之后,我们必须准确的检测电感上的电流。从理论上来说,检测电感电流有很多方式,例如利用MOSFET的导通阻抗Rdson检测或者用电感的直流电阻检测。但是实际上这些检测方式在精度上不能满足LED电流设置的要求(高亮度LED的精度为5%-15%)。如果直接用电阻RFB来检测IF,这样在精度上就可以满足要求,但是在电阻上将会产生额外的功耗。降低反馈电压VFB,在同样的检测电流IF (图. 2)的情况下可以降低检测电阻的阻值,这样就可以使功耗降到最低。最新的LED驱动大多数提供的参考电压(反馈电压)在50-200毫伏之间。
恒流降压调整器独特之处在于输出可以不需要电容。因为有连续的输出电流和不存在负载瞬态变化,这个调整器中输出电容的作用只是局限于电流滤波器。当我们设置成没有电容的恒流型降压调整器时,此时输出阻抗将大幅增加,而对于升压型来说,由于输出阻抗增加,为了满足输出电流恒定,输出电压也将会大幅增加。结果调光的速度和调光的范围都有了显著的提高。在应用过程中,从背光和机器视觉角度来说调光的范围是一种非常有价值的特性。
在另一方面,由于输出电容不足,AC电流的纹波电路需要比较大的电感,以满足LED纹波的要求(正向电流ΔIF = ±5 到20%)。在同样的电流纹波时,大电感会增加面积和LED驱动的成本。因此在恒流降压电路中,输出电容的使用要在成本、面积和调光的速度、范围之间经行权衡。
例如,用纹波电流驱动一个1A的白光LED(VF ≈ 3.5V),ΔIF需要满足±5%范围内,输入电压12V,频率为500kHz,在电感电流幅度为1.1A时,只能允许使用50mH的电感。然而如果电感的纹波电流允许增加±30%,那么电感将会小于10mH。如果10mH和50mH电感在使用相同的材料和相同的额定电流的情况下,在成本和体积方面,10mH大概只是50mH的一半。为了用10mH电感实现需求的ΔIF (±5 %),输出电容需要根据LED的动态电阻rD和检测电阻RFB和在此开关频率下电容的阻抗来计算,可以利用下面的表达式(Eq. 3)

37_161_1024277554.jpg
式3

式4:

37_161_1007170638.jpg
式4
来自:电子信息 / 电子技术
3
已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也
mass_lynnxy 作者
16年4个月前 IP:未同步
48104
环路控制结构
基于降压的结构可以与很多环路控制结构很好的匹配,而且不用考虑稳定性的限制,例如右半平面零点问题。除了和其他调光方法兼容以外,这种降压结构使得PWM调光变得容易。基于这种结构的LED驱动可以使系统设计人员提供更多的选择。滞回控制非常适合在开关频率变化比较快和输入范围比较小的情况下应用,例如白纸灯泡和交通灯。由于滞回控制不用考虑稳定性限制,所以不需要考虑环路补偿。不像环路控制那样受带宽限制。利用滞回控制驱动降压LED驱动(图.2a)使设计变得简单,也减少了器件数量和成本。这种结构也使PWM调光的范围比其他结构好。利用滞回控制的LED驱动非常适合在要求调光范围非常大和调光频率比较高以及开关频率变化非常大的情况下应用。


图2a:基本的滞回控制降压驱动。

类似的滞回降压LED驱动可以在固定频率操作和不需要开关频率变化的滞回控制之间提供了一个比较好的折中方案。控制开启时间的降压LED驱动(图2b)使用了一个滞回比较器和开启时间控制器。让开启时间与输入电压成反比,这样可以让开关频率的变化减少的最小。运用这种结构同样可以避免环路控制的带宽限制。运用不同的调光结构可以让调光范围变得非常宽。


图2b:开启时间控制的降压LED驱动。

在一些情况下,例如许多自动控制应用中,LED驱动与外部时钟或与驱动之间进行同步时要求减少噪音的干扰。在没有时钟的滞回控制和准滞回控制的结构在执行同步频率时会带来困难。相比来说,这个问题对于由时钟控制的调整器来说就比较容易实现,例如图2c中固定频率的降压LED驱动。固定频率控制可以解决这个复杂的问题,但是由于它动态响应的限制也影响了调光的范围。


图2c:基本的固定频率的降压LED驱动。

总之,降压LED驱动的很多特点使其变得很有吸引力。它可以很容易设置成电流源,也可以实现最少的外围元器件,器件少可以使得设计变得简单,提高驱动的稳定性,也可以减少成本。降压结构的LED适合很多种控制方式使其应用的灵活性比较高。它输出可以省略输出电容,也可以与其他不同的调光方式进行很好的匹配,这些特点可以允许它在高速调光和宽范围调光的情况下应用。当应用允许的情况下,所有的这些特点使得降压LED驱动的拓扑结构有了很多的选择。
什么样的应用条件不允许使用这种结构呢?例如家用或商用的照明需要上千流明,设计一种方法来驱动一个LED串。LED串上的总的正向压降等于其中每个LED正向压降之和。在一些情况下,系统的输入电压范围可能比一串LED的正向压降低,或者有的时候高有的时候低。这些情况下有可能会需要升压结构,也有可能会需要降-升压开关调整器。在下一部分,我们将会讨论升压和降-升压结构的LED驱动。
作者简介
Sameh Sarhan:加利福尼亚州圣克拉拉县,主要从事于中压/高压电源管理的应用工程师。从1998年开始,开始涉及电源电子。曾经在联邦无线电委员会和Vicor公司工作。工作经验包括设计软/硬开关电源,从几瓦到600瓦开关电源。Sameh1996年在开罗大学(埃及)电子工程系取得学士学位。
Chris Richardson:中压和高压的应用工程师。他的主要工作是划分任务,包括实验室工作、新ic评估、规格书的书写和应用注意事项等文档工作、培训现场工程师工作。2001年加入国家半导体以来,Chris工作的重点主要是同步控制器和调整器。在最近的3年,他主要是关注于高亮度LED在汽车和工业方面的应用。Chris拥有维吉尼亚工学院和州立大学的学士学位。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
mass_lynnxy作者
16年4个月前 IP:未同步
48105
A matter of light, Part 2--- Buck whenever possible
By Sameh Sarhan and Chris Richardson, National Semiconductor
In part one of this series, we thrashed out the basics of LED lighting sources and their driving requirements. The performance of simple driving techniques, such as voltage sources/ballast resistors and linear regulators, fall short as the complexity and input power requirements of LED-based lighting sources increase. Thus a more sophisticated switch-mode LED driver is required. So what would be the topology of choice? In part 2, we discuss why a constant-current buck converter should be the first preference when it comes to switch-mode LED drivers or, in other words, why the buck should be used whenever possible.
The rapid adoption of LEDs in various applications makes simple drive solutions such as linear regulators impractical in many cases. In general, simple drive schemes continuously deliver power from the input source to the driver's output while using resistive elements to program the desired LED forward current. For the same LED current, the losses in these resistive elements increase considerably as the line voltages increase. For example, a linear regulator based LED driver yields 70 percent efficiency when supplying 1 amp from a 5-volt input source to a typical white InGaN LED (VF = 3.5V). Under the same operating conditions, the driver's efficiency will drop to approximately 30 percent when the input voltage increases to 12 volts. Such poor efficiencies require impractical thermal management schemes.
Switching regulators
Switching regulators improve the conversion efficiency. They interrupt the power flow while controlling the conversion duty cycle to program the desired output voltage or output current. Interrupting the power flow results in pulsating current and voltage and therefore it necessitates the use of energy storage elements (inductors and/or capacitors) to filter these pulsating waveforms. Contrary to linear regulators, switching regulators can be configured in different arrangements to realize voltage or current step-down (buck), step-up (boost) or both (buck-boost) functions. They are also capable of achieving high conversion efficiencies across wide input/output range. Replacing the linear regulator with a buck-based LED driver in the previous example yields 95 to 98 percent efficiency across the 5-to-12 volt input range.
The configuration flexibility and the efficiency improvements of switching regulators come at the expense of higher noise generation caused by the periodic switching events, as well as higher premiums and reduced reliability due to their perceived complexity. Constant-current LEDs favor regulator topologies that can be simply configured as a constant-current source. The selected topology should also combine high performance with minimum component-count to increase the driver's reliability and to reduce cost. It should also facilitate the use of various dimming techniques to take advantage of the LEDs dynamic light- tuning characteristic. Fortunately, the most basic step-down (buck) switching topology enjoys all these characteristics, making it the regulator of choice to drive LEDs whenever possible.
Constant-current power stage
Switching regulators are most commonly known as voltage regulators. Figure 1a illustrates a basic constant-voltage buck regulator. The buck controller maintains a constant output voltage as the line voltage changes by varying the operating duty cycle (D) or the switching frequency. The desired output voltage set point is programmed using the following equation (Eq. 1):

37_161_1110337728.jpg
Eq. 1


37_161_1231738013.jpg
Fig. 1a: Basic step-down (buck) voltage regulator.

The inductor, L, is selected to set the peak-to-peak current ripple, ΔIpp, while the capacitor, Co, is selected to program a desired output-voltage ripple and to provide output-voltage hold-up under load transients. The average inductor current in a buck converter is equal to the load current, and, therefore, we can set the load current by controlling the peak-to-peak inductor-current ripple. This significantly simplifies the conversion of a constant-voltage source into a constant-current source. Figure 1b illustrates a basic constant-current buck regulator. Similarly, constant-current buck regulators provide line regulation by adjusting the conversion duty cycle or the switching frequency, and the LED current, IF, is programmed using the following equation (Eq. 2):

37_161_1156465081.jpg
Eq. 2


37_161_1402907283.jpg
Fig. 1b: Basic step-down (buck) current regulator.

After we set the LED current, IF, we must properly sense the inductor current. Theoretically, multiple current sense schemes such as MOSFET Rdson sensing and inductor DCR sensing can be used. However, practically, the current sense precision of some of these would not meet the required LED current set point accuracy (5 to 15 percent for a high brightness LED (HB-LED). If we directly sense IF through an inline resistor, RFB, we can secure the needed precision, but there may be excessive power dissipation in the current-sense resistor. Lowering the feedback voltage, VFB, allows the use of lower resistance values for the same IF (Eq. 2), which minimizes losses. The newer dedicated LED drivers generally offer reference voltages (feedback voltages) within the range of 50 to 200 millivolts.
Uniquely, constant-current buck-driven regulators can be configured without output capacitance. The use of the output capacitor, Co, in these regulators is limited to AC current filtering since they inherently do not experience load transients and have continuous output currents. When we configure a constant-current buck regulator without output capacitance, we substantially increase the converter's output impedance and, in turn, boost the converter's ability to rapidly change its output voltage so that it can maintain a constant current. As a result, the dimming speed and dimming range of the converter improve significantly. Wide dimming range is valuable feature in applications such as backlighting and machine vision.
On the other hand, lacking the required output capacitance, AC-current-ripple filtering circuitry necessitates the use of higher inductance values in order to meet the LED manufacturers recommended ripple current (ΔIF = ±5 to 20 percent of the DC forward current). At the same current rating, higher inductance values increase the size and cost of the LED driver. Consequently, the use of output capacitors in constant-current buck-based LED drivers is governed by a tradeoff between cost and size versus dimming speed and dimming range.
For example, in order to drive a single white LED (VF ≈ 3.5 volts) at 1 amp with a ripple current, ΔIF, of ±5 percent from an input of 12 volts at 500 kHz requires a 50 microhenry inductor with a current rating of 1.1 amps. However if the inductor ripple-current is allowed to increase to ±30 percent, then the inductance required is less than 10 microhenries. For the same core material and at approximately the same current rating, a 10 microhenry inductor will be typically offered at roughly half the size and cost of a 50 microhenry inductor. To attain the desired ΔIF (±5 percent) using the 10 microhenry inductor, the output capacitance required is calculated based on the dynamic resistance, rD, of the LED, the sense resistance, RFB, and the impedance of the capacitor at the switching frequency, using the following expression (Eq. 3):

37_161_1373786733.jpg
Eq. 3

where (Eq. 4):

37_161_1063697293.jpg
Eq. 4

Control-loop schemes
Buck-based power stages are well-matched to several control-loop schemes and free of stability limitations such as right-half-plane zeros. They uniquely facilitate the shunt PWM dimming approach in addition to being compatible with other dimming methods. This provides the system designer with configuration flexibility when designing an LED driver for specific requirements. Hysteretic control is well-suited for applications such as light bulbs and traffic lights, in which variable switching frequencies are tolerated or where narrow input-voltage range supplies are used. Hysteretic control doest not experience control-loop bandwidth restrictions, which eliminates the need for loop compensation because of its inherent stability. Utilizing hysteretic control to drive a buck-based LED driver (Fig. 2a) greatly simplifies the design as well as reduces the component count, and the cost of the driver. This configuration also yields superior PWM dimming ranges that outperform other buck-based schemes. Using hysteretic buck-based LED drivers with the shunt-dimming approach is well-suited for applications that require ultra-wide dimming ranges at high dimming frequencies and that can tolerate variable switching frequencies.

37_161_1011050041.jpg
Fig. 2a: Basic hysteretic buck-based driver.

Quasi-hysteretic buck-based LED drivers offer a good compromise between fixed-frequency operation and hysteretic control for applications in which variable switching frequencies may not be desired. The controlled on-time (quasi-hysteretic) buck-based LED driver (Fig. 2b) employs a control scheme based on a hysteretic comparator and a one-shot on-timer which is used to set a controlled on-time. This controlled on-time is programmed so that it is inversely proportional to the input voltage, and, therefore, it minimizes the switching frequency variations as the line voltage changes. Using this scheme also eliminates the need for control-loop bandwidth limitations, enabling it to achieve wide dimming ranges when used with different dimming configurations.

37_161_1160782481.jpg
Fig. 2b: Basic controlled on-time buck-based LED driver.

In some cases, as in a number of automotive applications, synchronizing the LED driver(s) to an external clock or to each other may be required to minimize noise interference. Implementing the frequency synchronization feature with the non-clock-based hysteretic and quasi-hysteretic scheme can be challenging. In contrast, this feature can be simply realized in clock-based regulators such as the fixed-frequency buck LED driver shown in Fig. 2c. Fixed frequency control generally yields a more complex solution, and it limits the dimming range of the driver regardless of the dimming approach due to its dynamic response limitations.

37_161_1149482156.jpg
Fig. 2c: Basic fixed-frequency buck-based LED driver.

In summary, there are many characteristics that make buck-based regulators attractive LED drivers. They are simple to configure as a current source and can be realized with minimum component counts, which simplifies the design process, improves the drivers' reliability, and reduces cost. Buck-based LED drivers also provide configuration flexibility since they are compatible with multiple control schemes. They also allow for high-speed dimming as well as wide dimming ranges since they can be configured without output capacitance and are well-matched to various dimming approaches including shunt dimming. All these features make buck-based (step-down) LED drivers the topology of choice whenever the application permits.
What if the application does not permit their use? Applications such as residential and commercial lighting require thousands of lumens, creating a need to drive LED strings. The total forward voltage drop of an LED string is equal to the sum of the forward voltage drops of all the LEDs in the string. In some cases, the input voltage range of the system can be lower than the forward voltage drop of the LED string, or it can vary so that sometimes it's lower and sometimes it's higher. These scenarios would require either boost, or buck-boost switching regulators. In the next installment, we discuss the challenges of using boost and buck-boost topologies to drive LEDs.
About the authors
Sameh Sarhan is a staff applications engineer for the Medium Voltage/High Voltage Power Management group in Santa Clara, CA. He has been involved with power electronics in various forms since 1998, having worked for FRC Corp. and Vicor Corp. His experience includes the design of hard/soft switching power supplies from a few watts to 600 watts. Sameh received a bachelor's degree in electronics engineering in 1996 from Cairo University (Egypt).
Chris Richardson is an applications engineer in the Power Management Products group, Medium and High Voltage Division. His responsibilities are divided between lab work, bench evaluation of new ICs, written work such as datasheets and applications notes, and training for field engineers and seminars. Since joining National Semiconductor in 2001, Chris has worked mainly on synchronous buck controllers and regulators. In the last three years he has focused on products for the emerging high brightness LED market in the automotive and industrial areas. Chris holds a BSEE from the Virginia Polytechnic Institute and State University.
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/showArticle.jhtml;jsessionid=YSAFE5VEPYYTUQSNDLOSKH0CJUNN2JVN?articleID=208400193&queryText=
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论

想参与大家的讨论?现在就 登录 或者 注册

所属专业
所属分类
上级专业
同级专业
mass_lynnxy
进士 学者 机友 笔友
文章
650
回复
1176
学术分
40
2005/11/29注册,1个月6天前活动
暂无简介
主体类型:个人
所属领域:无
认证方式:手机号
IP归属地:未同步
文件下载
加载中...
{{errorInfo}}
{{downloadWarning}}
你在 {{downloadTime}} 下载过当前文件。
文件名称:{{resource.defaultFile.name}}
下载次数:{{resource.hits}}
上传用户:{{uploader.username}}
所需积分:{{costScores}},{{holdScores}}下载当前附件免费{{description}}
积分不足,去充值
文件已丢失

当前账号的附件下载数量限制如下:
时段 个数
{{f.startingTime}}点 - {{f.endTime}}点 {{f.fileCount}}
视频暂不能访问,请登录试试
仅供内部学术交流或培训使用,请先保存到本地。本内容不代表科创观点,未经原作者同意,请勿转载。
音频暂不能访问,请登录试试
支持的图片格式:jpg, jpeg, png
插入公式
评论控制
加载中...
文号:{{pid}}
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

加载中...
详情
详情
推送到专栏从专栏移除
设为匿名取消匿名
查看作者
回复
只看作者
加入收藏取消收藏
收藏
取消收藏
折叠回复
置顶取消置顶
评学术分
鼓励
设为精选取消精选
管理提醒
编辑
通过审核
评论控制
退修或删除
历史版本
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}