[求教]一个假的运动学问题
三水合番2017/03/11数学 IP:四川
已知加速度 - 位移函数满足
$$ \int_0^{x_1}\ a_x\ dx = E_k $$其中\( x_1, E_k \)为已知常数,\( a_x \)表示加速度与位移的关系,为未知函数。
求一“加速度 - 位移函数“,使如下“加速度 - 时间函数”的函数取得最小值。
$$ E_l =  \int_0^{t_1}\ a_t^2 \ dt $$其中,\( t_1 \)未知;\( a_t \)表示加速度与时间的关系,同样未知。
已知\( t=0 \)时,\( x=0, v=0 \);\( t=t_1 \)时,\( x=x_1 \)。


为啥说这个是假的运动学问题呢……因为这个问题是“求磁阻式电磁炮的最优‘电流 - 弹丸位置’曲线”的变形,原问题是这样的:
已知加速力和电流成正比例关系,电阻损耗功率和电流的平方成正比例关系。求一合适的“电流 - 位置”函数,使“在一给定距离内加速到一给定速度”的过程中,电阻损耗的能量最小。

[修改于 7年10个月前 - 2017/03/11 08:59:43]

来自:数理化 / 数学
1
已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也

想参与大家的讨论?现在就 登录 或者 注册

所属专业
上级专业
同级专业
插入公式
评论控制
加载中...
文号:{{pid}}
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

加载中...
详情
详情
推送到专栏从专栏移除
设为匿名取消匿名
查看作者
回复
只看作者
加入收藏取消收藏
收藏
取消收藏
折叠回复
置顶取消置顶
评学术分
鼓励
设为精选取消精选
管理提醒
编辑
通过审核
评论控制
退修或删除
历史版本
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}