开方去倒快速算法
iamapighhh2012/01/28软件综合 IP:山东
声明转帖自XXXXXXXXXXXXXXXXXXXXX/note/93460299/
                   XXXXXXXXXXXXXXXXXXXX/bbs/bbs_content.jsp?bbs_sn=5367145&bbs_page_no=1&search_mode=1&search_text=%CB%E3%B7%A8&bbs_id=9999

以下正文:
Quake-III Arena (雷神之锤3)是90年代的经典游戏之一。该系列的游戏不但画面和内容不错,而且即使计算机配置低,也能极其流畅地运行。这要归功于它3D引擎的开发者约翰-卡马克(John Carmack)。事实上早在90年代初DOS时代,只要能在PC上搞个小动画都能让人惊叹一番的时候,John Carmack就推出了石破天惊的Castle Wolfstein, 然后再接再励,doom, doomII, Quake...每次都把3-D技术推到极致。他的3D引擎代码资极度高效,几乎是在压榨PC机的每条运算指令。当初MS的Direct3D也得听取他的意见,修改了不少API。

   最近,QUAKE的开发商ID SOFTWARE 遵守GPL协议,公开了QUAKE-III的原代码,让世人有幸目睹Carmack传奇的3D引擎的原码。
   这是QUAKE-III原代码的下载地址:
  XXXXXXXXXXXXXXXXXXXXXXXX/file.x?fid=7547

(下面是官方的下载网址,搜索 “quake3-1.32b-source.zip” 可以找到一大堆中文网页的
ftp://XXXXXXXXXXXXXXXXXX/idstuff/source/quake3-1.32b-source.zip)

   我们知道,越底层的函数,调用越频繁。3D引擎归根到底还是数学_运算。那么找到最底层的数学_运算函数(在game/code/q_math.c), 必然是精心编写的。里面有很多有趣的函数,很多都令人惊奇,估计我们几年时间都学不完。

在game/code/q_math.c里发现了这样一段代码。它的作用是将一个数开平方并取倒,经测试这段代码比(float)(1.0/sqrt(x))快4倍:
float Q_rsqrt( float number )
{
   long i;
   float x2, y;
   const float threehalfs = 1.5F;

   x2 = number * 0.5F;
   y = number;
   i = * ( long * ) &y; // evil floating point bit level hacking
  i = 0x5f3759df - ( i >> 1 ); // what the fuck?
   y = * ( float * ) &i;
   y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
   // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed

   #ifndef Q3_VM
   #ifdef __linux__
     assert( !isnan(y) ); // bk010122 - FPE?
   #endif
   #endif
   return y;
}

    函数返回1/sqrt(x),这个函数在图像处理中比sqrt(x)更有用。
    注意到这个函数只用了一次叠代!(其实就是根本没用叠代,直接运算)。编译,实验,这个函数不仅工作的很好,而且比标准的sqrt()函数快4倍!要知道,编译器自带的函数,可是经过严格仔细的汇编优化的啊!
  
   这个简洁的函数,最核心,也是最让人费解的,就是标注了“what the fuck?”的一句
      i = 0x5f3759df - ( i >> 1 );

再加上y = y * ( threehalfs - ( x2 * y * y ) );
两句话就完成了开方运算!而且注意到,核心那句是定点移位运算,速度极快!特别在很多没有乘法指令的RISC结构CPU上,这样做是极其高效的。

算法的原理其实不复杂,就是牛顿迭代法,用x-f(x)/f'(x)来不断的逼近f(x)=a的根。

简单来说比如求平方根,f(x)=x^2=a ,f'(x)= 2*x,f(x)/f'(x)=x/2,把f(x)代入

x-f(x)/f'(x)后有(x+a/x)/2,现在我们选a=5,选一个猜测值比如2,
那么我们可以这么算
5/2 = 2.5; (2.5+2)/2 = 2.25; 5/2.25 = xxx; (2.25+xxx)/2 = xxxx ...
这样反复迭代下去,结果必定收敛于sqrt(5),没错,一般的求平方根都是这么算的
但是卡马克(quake3作者)真正牛B的地方是他选择了一个神秘的常数0x5f3759df 来计算那个猜测值
就是我们加注释的那一行,那一行算出的值非常接近1/sqrt(n),这样我们只需要2次牛 顿迭代就可以达到我们所需要的精度.
好吧 如果这个还不算NB,接着看:


普渡大学的数学家Chris Lomont看了以后觉得有趣,决定要研究一下卡马克弄出来的
这个猜测值有什么奥秘。Lomont也是个牛人,在精心研究之后从理论上也推导出一个
最佳猜测值,和卡马克的数字非常接近, 0x5f37642f。卡马克真牛,他是外星人吗?

传奇并没有在这里结束。Lomont计算出结果以后非常满意,于是拿自己计算出的起始
值和卡马克的神秘数字做比赛,看看谁的数字能够更快更精确的求得平方根。结果是
卡马克赢了... 谁也不知道卡马克是怎么找到这个数字的。

最后Lomont怒了,采用暴力方法一个数字一个数字试过来,终于找到一个比卡马克数
字要好上那么一丁点的数字,虽然实际上这两个数字所产生的结果非常近似,这个暴
力得出的数字是0x5f375a86。

Lomont为此写下一篇论文,"Fast Inverse Square Root"。



论文下载地址:
XXXXXXXXXXXXXXXXXXXXXXXXXX/~clomont/Math/Papers/2003/InvSqrt.pdf
XXXXXXXXXXXXXXXXXXXXXXX/data/InvSqrt.pdf
点击此处下载 ourdev_714253IQ3KPV.pdf(文件大小:148K) (原文件名:InvSqrt.pdf)  



参考:<IEEE Standard 754 for Binary Floating-Point Arithmetic><FAST INVERSE SQUARE ROOT>


最后,给出最精简的1/sqrt()函数:
float InvSqrt(float x)
{
   float xhalf = 0.5f*x;
   int i = *(int*)&x; // get bits for floating VALUE
   i = 0x5f375a86- (i>>1); // gives initial guess y0
   x = *(float*)&i; // convert bits BACK to float
   x = x*(1.5f-xhalf*x*x); // Newton step, repeating increases accuracy
   return x;
}  
大家可以尝试在PC机、51、AVR、430、ARM、上面编译并实验,惊讶一下它的工作效率。


==============增加================
看matrix67大侠的解释
XXXXXXXXXXXXXXXXXXXXXXX/blog/archives/362

这样的代码速度肯定飞快,我就不用多说了;但算法的原理是什么呢?其实说穿了也不是很神,程序首先猜测了一个接近1/sqrt(number)的值,然后两次使用牛顿迭代法进行迭代。根号a的倒数实际上就是方程1/x^2 - a = 0的一个正实根,它的导数是-2/x^3。运用牛顿迭代公式x' = x - f(x)/f'(x),式子化简为x' = x * (1.5 - 0.5a * x^2)。迭代几次后,x的值将趋于1/sqrt(a)。
    但这段代码真正牛B的是那个神秘的0x5f3759df,因为0x5f3759df - (i >> 1)出人意料地接近根号y的倒数。人们都不知道这个神秘的常数是怎么来的,只能把它当作神来膜拜。这个富有传奇色彩的常数到底咋回事,很少有人说得清楚。这篇论文(就是上面的附件)比较科学地解释了这个常数。
来自:计算机科学 / 软件综合
6
已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也

想参与大家的讨论?现在就 登录 或者 注册

所属专业
上级专业
同级专业
iamapighhh
进士 学者 机友 笔友
文章
11
回复
178
学术分
1
2009/06/17注册,3个月8天前活动

在航空领域工作的工程技术人员。

主体类型:个人
所属领域:无
认证方式:手机号
IP归属地:未同步
文件下载
加载中...
{{errorInfo}}
{{downloadWarning}}
你在 {{downloadTime}} 下载过当前文件。
文件名称:{{resource.defaultFile.name}}
下载次数:{{resource.hits}}
上传用户:{{uploader.username}}
所需积分:{{costScores}},{{holdScores}}下载当前附件免费{{description}}
积分不足,去充值
文件已丢失

当前账号的附件下载数量限制如下:
时段 个数
{{f.startingTime}}点 - {{f.endTime}}点 {{f.fileCount}}
视频暂不能访问,请登录试试
仅供内部学术交流或培训使用,请先保存到本地。本内容不代表科创观点,未经原作者同意,请勿转载。
音频暂不能访问,请登录试试
支持的图片格式:jpg, jpeg, png
插入公式
评论控制
加载中...
文号:{{pid}}
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

加载中...
详情
详情
推送到专栏从专栏移除
设为匿名取消匿名
查看作者
回复
只看作者
加入收藏取消收藏
收藏
取消收藏
折叠回复
置顶取消置顶
评学术分
鼓励
设为精选取消精选
管理提醒
编辑
通过审核
评论控制
退修或删除
历史版本
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}