将其中一张放到验钞机上检验发现是假钞
关键是这句话怎样理解?
从混有5张假币的20张百元钞票中任意抽取两张,将其中一张放到验钞机上检验发现是假钞,则另一张也是假钞的概率是:
B: 4/19
C: 2/17
我们的校一模题。
[修改于 3年7个月前 - 2021/04/24 09:38:32]
都选C
。。。。。。。
好吧这是一首歌
。。。。。。。
首先心算排除B
因为心算结果是B
而我马上发现刚才心算中错误地引入了先后次序 带入错误信息 算错了还得B说明不能选B
。。。。。。。
做下来简单键盘算
c1:都是假概率 1/4*4/19
c2:前假后真 1/4*15/19
c3:前真后假 3/4*5/19
c4:都真 3/4*14/19
条件化排除c4后
c1概率为:4/(4+15+15)=2/17
。。。。。
应该选C吧
这也符合大多数正确答案应该在的位置
已经告诉你其中一张是假钞了,信息量就此获得了增加,或者反过来说,剩余部分的不确定度降低了,因此已经不是原题了。
现在的问题是“其中一张”是否说明两张样本的检验又先后顺序,如果有,那么真假各一的情况只有一半被检查出的可能。而这正是我与老师争论的关键。
引用荷城工业_Nitload_Industry发表于4楼的内容现在的问题是“其中一张”是否说明两张样本的检验又先后顺序,如果有,那么真假各一的情况只有一半被检查出...
题目的条件也是“其中有一张是假的”
而不是“某(前面)(后面)张是假的”
信息量是不同的 结果会不一样
。。。。。。。。。。
我同意题目出得有些不谨慎
出题的原意应该是“其中至少一张是假”
但是“应用题”的应用没有严谨地表明这点
它应该这样说
“有一个人 检查了两张票 然后告诉你 至少有一张是假的”
。。。。。。。。
“其中一张” 通常是为了向回答者提示“概率”
但是会被误解为“具体操作”
这两者是不同的信息容易被混淆
这类题目最近几年忽然流行起来,典型的例子是电视竞猜砸彩蛋,当你选中一个选项的时候,主持人砸了另一个彩蛋,问你是否改变选项?书上的结论是应该改变,因为各选项的中奖概率在主持人砸蛋的瞬间发生了巨大变化。
虽然理论上可以说得头头是道,然而这么玄幻的事情,难道不需要实验检验吗?
楼主这个做实验也不难,如果概率发生了如此大的变化,不需要试太多次就能得到显著的结果。
想到了三门问题,《流言终结者》第九季第21集做过和三门问题相关的实验
可能性有真真15*14,真假5*15,假真15*5,假假5*4,因为题目告诉你是验一张是真,那么真假和假真是互斥事件不能同时存在,所有有两个相等的概率,1、假假/(假假+假真)或2、假假/(假假+真假),得5*4/(5*4+15*5)。真假和假真的同时存在条件是:告诉你那两张中有一张是真,不能验,验了就是互斥。
时段 | 个数 |
---|---|
{{f.startingTime}}点 - {{f.endTime}}点 | {{f.fileCount}} |
200字以内,仅用于支线交流,主线讨论请采用回复功能。