与电流平方成正比的损耗——焦耳热损耗
首先介绍电机控制器。如果存在电阻,则会产生焦耳热(I2 Rt)。损耗与 电流(I)的平方成正比,与电阻(R)和时间(t)也 成正比。电流流过的所有部分都会产生焦耳热,在意想不 到的地方产生焦耳热。考虑焦耳热对策,首先要了解防止焦耳热产生 的技术。
逆变器及其内部
MOSFET 的功能 参加 WEM 比赛通常会选用逆变器作为电机控制 器装置。虽有各种类型的控制器,但无刷直流电机 + 逆变器组合的效率更高(低损耗)。无刷直流电机自身并不利用直流,而是利用三相 交流进行驱动。变换器从直流电源处生成三相交流电,并随时调整电压,输入电机(图 1)。
图1
逆变器的功能
逆变器内部装有微控制器,会生成高速信号(交 流信号)。根据微控制器输出的开关信号,高速且正 确地开关电池(直流电源)。
三相线圈电机与六开关逆变器
无刷直流电机存在三相(U 相 /V 相 /W 相)绕组, 使用 120°方波通电时,电流通常从一相绕组流向另一 相绕组,而剩下的一相并不流通电流。为了使电流保 持流通,笔者准备了 6 个开关(图 2)。
图2
选取 3 个开关与正极侧相连。同样,与负极侧也 有 3 个开关,共计 6 个。高压侧和低压侧各自仅能选择一相,且两者不能 选取同一相。由固定模式高速切换开关。
微控制器和传感器发出时序指令
如果以图 3 所示的模式切换三相开关,则电机旋 转。
图3
微控制器根据时序控制切换模式。随意切换开关 模式会导致电机的随机旋转。旋转时需准确找到转子磁体位置并计算切换时序。电机定子侧载有检测转子磁体接近的传感器。微控制 器检测传感器的状态,并决定开关时序。虽然微控制器向 6 个开关输出指令,但发挥开关 功能的却是 MOSFET。笔者在图 4 所示的赛车中应用了上述控制方式。
图4
开关器件
MOSFET 逆变器通常会使用 6 个 MOSEFT。MOSEFT 为晶 体管的一种,有 3 个引脚。其中,向栅极施加电压(ON) 时,电流从与电池正极侧相连的漏极流向负极侧的源 极。栅极发挥开关作用(图5)。
图5
漏极连接正极侧,源极连接负极侧电路。正负极 对调时,电流会从寄生二极管中流过。电机电路中存在大型电感(线圈)。因此,开通 时储存电能,关断时电流反向流过 MOSEFT 的寄生二 极管。电流流过二极管时,会产生电压降,从而形成巨 大损耗。
利用 PWM 占空比控制电压
提高电机转速时,通常需提高电压,需安装可改 变三相交流电源电压的装置。多数逆变器利用 PWM(Pulse Width Modulation,脉冲宽度调制)来控制电压。为此,控制电机旋转的 开关需要持续高速切换。观察图 7 可知,在开通时间 内以载波频率进行高速开关。这称为斩波。开通时间所占比例为占空比,决定电机的平均电 压(图 6)。
图6
100% 开通意味着占空比达到 100%。此 时电机电压为 12V,为一块铅酸蓄电池的电源电压。50% 占空比表示 12V 时间与 0V 时间各占一半。此时,电机驱动的平均电压为 6V。30% 占空比时为 3.6V。PWM 控制是逆变器控制的基本方法,可控制电机 的驱动电压(转速)。例如,要提高电机转速,就要 提高电机电压,也就是增大占空比。车辆的加速控制采用 PWM。
电机和逆变器的损耗
何时引起 MOSFET 损耗?
这 是 有 关 损 耗 的 课 题。笔 者 先 考 虑 开 关 器 件 MOSFET 的情况(图 7)。
图7
(1)开通损耗——通态电阻 MOSFET 开通时,大电流在源极与漏极间流通, MOSFET 通态电阻会产生开通损耗。通态电阻随 MOSFET 型号的不同而不同。MOSFET 的通态电阻小于普通晶体管,但笔者选用更小通态电 阻的 MOSFET。开关速度高(频率特性优良)的 MOSFET 的通态 电阻有增大的倾向。
(2)开关损耗 观察图 7 可知,MOSFET 进行高速开关时,开关 切换时间不为零。在过渡期存在电阻,会产生较大发 热(损耗),这被称为开关损耗。频率特性越好的 MOSFET,开关损耗越小。
(3)寄生二极管损耗 仅单臂斩波时似乎并没有什么影响,真实并非 如此。单臂的 PWM 斩波也会产生损耗。观察图 2可 知,在 MOSFET 关断期间,电机线圈中储存的电能 通过 MOSFET 的寄生二极管放电,电流从源极流向 漏极。该反向电流流经寄生二极管内部电阻时产生焦耳 热损耗。
寄生二极管的重要功能
上述对寄生二极管的说明,可能会给人留下不好 的印象。但寄生二极管发挥着非常重要的作用。MOSFET 没有寄生二极管会非常麻烦。在 MOSFET 关断期间,电机线圈需要寄生二极管续流,防止同步 整流死区时间的浪涌电流破坏器件。
占空比产生的损耗
以额定功率行驶,改变占空比
限制时间的持久 EV 比赛中,参赛者一般采用额 定的功率消耗和巡航速度行驶的控制方法。这都是因 为易于能量管理。很多名次靠前的团队会在起动时、弯道减速时使 用 PWM 斩波,剩下时间的占空比为 100%。加速时会 采用进角控制与提高电压的方法。
50% 占空比与 100%
占空比的损耗相差数倍 假设开通时间占整体的 50%,且每段时间的驱动 力相同,则电流为平时的 2 倍。焦耳热损耗与电流的平方成正比,因此 100% 占 空比时的损耗是 50% 占空比时的 4 倍。又因损耗存在 时间(开通时间)为 50% 占空比时的 2 倍,所以每段 时间产生的焦耳损耗是原来的 2 倍。即使降低MOSFET的开关损耗也无法弥补这个量。
希望以 100% 占空比行驶
按照想法,笔者希望将占空比调节为100%行驶。
寄生二极管产生损耗的机理
单臂斩波的反向电流
如前所述,线圈为电感,在开关开通期间储存电能, 关断期间释放电能,如图 8所示。
图8
观察图形,可知 UH 处于开通状态。随着上臂 PWM 斩波,UH 反复快速地开关。此时,LH 始终处 于关断状态。在 UH 与 LH 全部关断的情况下,观察图 6 可知,线圈电感通过 UL 寄生二极管续流。
断电后电机中也有电流
续流时的电源并不是电池,而是电机线圈。斩波 时开关关断,电源电流不流通,但线圈中还会继续流 通电流。当然,电源侧(电池与控制器间)的电流仅在 开关开通时流通。斩波时,电机线圈中产生反向电 流(图 9)。
图9
同步整流的损耗对策
损耗被分成数万份
线圈电流波形有少量波动。虽存在些许误差,但 对于平均电流, 线圈电流 × 占空比 = 电源电流 的关系仍成立。平均值不是效值。关断时,UL 的寄生二极管续流会形成寄生二极管 正向压降。假设电压为 12V,则压降约 1V。损耗 = 正向电阻 × 电流,因流通数安培的电流, 所以损耗也不可小视。但同步整流可降低损耗。
如果设置同步整流
同步是指生成互补 PWM 信号,在上臂关断期间, 让下臂开通。寄生二极管产生的损耗可式减小为 通态电阻 × 电流 2 通态电阻随 MOSFET 型号的不同而不同,约为 1mΩ。
无法完全同步
上臂与下臂交替开通,即两臂不可同时开通,否 则会导致电源短路。因此,两臂需设置同时关断的时 间——死区。两臂同时关断会产生寄生二极管损耗。
栅极电路的损耗
MOSFET 的栅极电流较大
为了快速开关,MOSFET 的栅极电流达到 2A,是 非常大的电流。从电流大小来看,似乎损耗很大。但这实际上是 峰值,栅极负载为电容。每次开关的损耗为栅极电量 × 栅极电压 2 因此,损耗并不取决于栅极电流的大小,而取决 于栅极电容和开关次数。这种损耗并不是很大,但开关损耗取决于寄生二 极管压降以及开关延迟期间的电阻。
1
END
1