所有教程由网友发布,仅供参考,请谨慎采纳。科创不对教程的科学性、准确性、可靠性负责。
符合中国国情的感应加热DIY教程[原创]转载注明出处
ehco2010/12/16电子技术 IP:广东
声明:在实物的制作以及此教程的撰写过程中,得到虎哥,爱非神话,slof兄,猴哥,的大力支持
在此表示感谢。

(为什么说符合中国国情呢,因为所有元件均可在大陆获得,且为大路货)
成本估算:
紫铜管紫铜带:210元
EE85加厚磁芯2个:60元
高频谐振电容3个:135元
胶木板:60元
水泵及PU管:52元
PLL板:30元
GDT板:20元
电源板:50元
MOSFET:20元
2KW调压器:280元
散热板:80元

共计:997元

总体架构:
串联谐振2.5KW 锁相环追频ZVS,MOSFET全桥逆变;
磁芯变压器两档阻抗变换,水冷散热,市电自耦调压调功,母线过流保护。

先预览一下效果,如下图:
加热金封管3DD15
1.jpg
加热304不锈钢管
2.jpg
加热小金属球
   3.jpg
加热铁质垫圈
   4.jpg
在开始制作之前,有必要明确一些基础性原理及概念,这样才不致于一头雾水。
一.    加热机制(扫盲用,高手跳过)
1.1涡流,只要是金属物体处于交变磁场中,都会产生涡流,强大的高密度涡流能迅速使工件升温。这个机制在所有电阻率不为无穷大的导体中均存在。
1.2感应环流,工件相当于一个短路的1匝线圈,与感应线圈构成一个空心变压器,由于电流比等于匝比的反比,工件上的电流是感应线圈中电流的N(匝数)倍,强大的感应短路电流使工件迅速升温。这个机制在任何导体中均存在,恒定磁通密度情况下,工件与磁场矢量正交的面积越大,工件上感生的电流越大,效率越高。由此可看出,大磁通切割面积的工件比小面积的工件更容易获得高温。
1.3磁畴摩擦(在铁磁体内存在着无数个线度约为10-4m的原本已经磁化了的小区域,这些小区域叫磁畴),铁磁性物质的磁畴,在交变磁场的磁化与逆磁环作用下,剧烈摩擦,产生高温。这个机制在铁磁性物质中占主导。
由此可看出,不同材料的工件,因为加热的机制不同,造成的加热效果也不一样。其中铁磁物质三中机制都占,加热效果最好。铁磁质加热到居里点以上时,转为顺磁性,磁畴机制减退甚至消失。这时只能靠剩余两个机制继续加热。
当工件越过居里点后,磁感应现象减弱,线圈等效阻抗大幅下降,致使谐振回路电流增大。越过居里点后,线圈电感量也跟着下降。LC回路的固有谐振频率会发生变化。致使固定激励方式的加热器失谐而造成设备损坏或效率大减。

二.    为什么要采用谐振?应采用何种谐振?
2.1先回答第一个问题。我曾经以为只要往感应线圈中通入足够强的电流,就成一台感应加热设备了。也对此做了一个实验,见下图。
5.jpg
[/size] 6.jpg
+500  科创币    joyeep    2010/12/16
+500  科创币    xj198398xujing    2010/12/17 优秀文章
+25  科创币    soap-coke    2011/12/25 教科书级别
+25  科创币    delete    2012/05/10 多谢...
+2  学术分    科创网    2010/12/17 好文。原理深入浅出,过程清晰明了。
来自:电子信息 / 电子技术严肃内容:教程/课程
261
 
8
已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也
ehco 作者
14年1个月前 IP:未同步
269459
实验中确实有加热效果,但是远远没有达到电源的输出功率应有的效果。这是为什么呢,我们来分析一下,显然,对于固定的工件,加热效果与逆变器实际输出功率成正比。对于感应线圈,基本呈现纯感性,也就是其间的电流变化永远落后于两端电压的变化,也就是说电压达到峰值的时候,电流还未达到峰值,功率因数很低。我们知道,功率等于电压波形与电流波形的重叠面积,而在电感中,电流与电压波形是错开一个角度的,这时的重叠面积很小,即便其中通过了巨大的电流,也是做无用功。这是如果单纯的计算P=UI,得到的只是无功功率。
而对于电容,正好相反,其间的电流永远超前于电压变化。如果将电容与电感构成串联或并联谐振,一个超前,一个滞后,谐振时正好抵消掉。因此电容在这里也叫功率补偿电容。这时从激励源来看,相当于向一个纯阻性负载供电,电流波形与电压波形完全重合,输出最大的有功功率。这就是为什么要采取串(并)补偿电容构成谐振的主要原因。
2.2第二个问题,LC谐振有串联谐振和并联谐振,该采用什么结构呢。
说得直白一点,并联谐振回路,谐振电压等于激励源电压,而槽路(TANK)中的电流等于激励电流的Q倍。串联谐振回路的槽路电流等于激励源电流,而L,C两端的电压等于激励源电压的Q倍,各有千秋。
从电路结构来看:
对于恒压源激励(半桥,全桥),应该采用串联谐振回路,因为供电电压恒定,电流越大,输出功率也就越大,对于串联谐振电路,在谐振点时整个回路阻抗最小,谐振电流也达到最大值,输出最大功率。串联谐振时,空载的回路Q值最高,L,C两端电压较高,槽路电流白白浪费在回路电阻上,发热巨大。
对于恒流源激励(如单管电路),应采用并联谐振,自由谐振时LC端电压很高,因此能获得很大功率。并联谐振有个很重要的优点,就是空载时回路电流最小,发热功率也很小。值得一提的是,从实验效果来看,同样的谐振电容和加热线圈,同样的驱动功率,并联谐振适合加热体积较大的工件,串联谐振适合加热体积小的工件。

三.    制作过程
明白了以上原理后,可以着手打造我们的感应加热设备了。我们制作的这个设备主要由调压整流电源、锁相环、死区时间发生器、GDT电路、MOS桥、阻抗变换变压器、LC槽路以及散热系统几大部分组成,见下图。
7.jpg
我们再来对构成系统的原理图进行一些分析,如下:
槽路部分:
8.jpg
从上图可以看出,C1、C2、C3、L1以及T1的次级(左侧)共同构成了一个串联谐振回路,因为变压器次级存在漏感,回路的走线也存在分布电感,所以实际谐振频率要比单纯用C1-C3容量与L1电感量计算的谐振频率略低。图中L1实际上为1uH,我将漏感分布电感等加在里面所以为1.3uH,如图参数谐振频率为56.5KHz。
从逆变桥输出的高频方波激励信号从J2-1输入,通过隔直电容C4及单刀双掷开关S1后进入T1的初级,然后流经1:100电流互感器后从J2-2回流进逆变桥。在这里,C4单纯作为隔直电容,不参与谐振,因此应选择容量足够大的无感无极性电容,这里选用CDE无感吸收电容1.7uF 400V五只并联以降低发热。
S1的作用为阻抗变换比切换,当开关打到上面触点时,变压器的匝比为35:0.75,折合阻抗变比为2178:1;当开关打到下面触点时,变压器匝比为24:0.75,折合阻抗变比为1024:1。为何要设置这个阻抗变比切换,主要基于以下原因。(1)铁磁性工件的尺寸决定了整个串联谐振回路的等效电阻,尺寸越大,等效电阻越大。(2)回路空载和带载时等效电阻差别巨大,如果空载时变比过低,将造成逆变桥瞬间烧毁。
T2是T1初级工作电流的取样互感器,因为匝比为1:100,且负载电阻为100Ω,所以当电阻上电压为1V时对应T1初级电流为1A。该互感器应有足够小的漏感且易于制作,宜采用铁氧体磁罐制作,如无磁罐也可用磁环代替。在调试电路时,可通过示波器检测J3两端电压的波形形状和幅度而了解电路的工作状态,频率,电流等参数,亦可作为过流保护的取样点。
J1端子输出谐振电容两端的电压信号,当电路谐振时,电容电压与T1次级电压存在90°相位差,将这个信号送入后续的PLL锁相环,就可以自动调节时激励频率始终等于谐振频率。且相位恒定。(后文详述)
L1,T1线圈均采用紫铜管制作,数据见上图,工作中,线圈发热严重,必须加入水冷措施以保证长时间安全工作。为保证良好的传输特性以及防止磁饱和,T1采用两个EE85磁芯叠合使用,在绕制线圈时需先用木板做一个比磁芯舌截面稍微大点的模子,在上面绕制好后脱模。如下图:
   9.jpg
PLL锁相环部分:
   10.jpg
上图为PLL部分,是整个电路的核心。关于CD4046芯片的结构及工作原理等,我不在这里详述,请自行查阅书籍或网络。
以U1五端单片开关电源芯片LM2576-adj为核心的斩波稳压开关电路为整个PLL板提供稳定的,功率强劲的电源。图中参数可以提供15V2A的稳定电压。因为采用15V的VDD电源,芯片只能采用CD40xx系列的CMOS器件,74系列的不能在此电压下工作。
CD4046锁相环芯片的内部VCO振荡信号从4脚输出,一方面送到U2为核心的死区时间发生器,用以驱动后级电路。另一方面回馈到CD4046的鉴相器输入B端口3脚。片内VCO的频率范围由R16、R16、W1、C13的值共同决定,如图参数时,随着VCO控制电压0-15V变化,振荡频率在20KHz-80KHz之间变化。
从谐振槽路Vcap接口J1送进来的电压信号从J4接口输入PLL板,经过R14,D2,D3构成的钳位电路后,送入CD4046的鉴相器输入A端口14脚。这里要注意的是,Vcap电压的相位要倒相输入,才能形成负反馈。D2,D3宜采用低结电容的检波管或开关管如1N4148、1N60之类。
C7、C12为CD4046的电源退耦,旁路掉电源中的高频分量,使其稳定工作。
现在说说工作流程,我们选用的是CD4046内的鉴相器1(XOR异或门)。对于鉴相器1,当两个输人端信号Ui、Uo的电平状态相异时(即一个高电平,一个为低电平),输出端信号UΨ为高电平;反之,Ui、Uo电平状态相同时(即两个均为高,或均为低电平),UΨ输出为低电平。当Ui、Uo的相位差Δφ在0°-180°范围内变化时,UΨ的脉冲宽度m亦随之改变,即占空比亦在改变。从比较器Ⅰ的输入和输出信号的波形(如图4所示)可知,其输出信号的频率等于输入信号频率的两倍,并且与两个输入信号之间的中心频率保持90°相移。从图中还可知,fout不一定是对称波形。对相位比较器Ⅰ,它要求Ui、Uo的占空比均为50%(即方波),这样才能使锁定范围为最大。如下图。
   11.jpg
由上图可看出,当14脚与3脚之间的相位差发生变化时,2脚输出的脉宽也跟着变化,2脚的PWM信号经过U4为核心的有源低通滤波器后得到一个较为平滑的直流电平,将这个直流电平做为VCO的控制电压,就能形成负反馈,将VCO的输出信号与14脚的输入信号锁定为相同频率,固定相位差。
关于死区发生器,本电路中,以U2 CD4001四2输入端与非门和外围R8,R8,C10,C11共同组成,利用了RC充放电的延迟时间,将实时信号与延迟后的信号做与运算,得到一个合适的死区。死区时间大小由R8,R8,C10,C11共同决定。如图参数,为1.6uS左右。在实际设计安装的时候,C10或C11应使用68pF的瓷片电容与5-45pF的可调电容并联,以方便调整两组驱动波形的死区对称性。
下图清晰地展示了死区的效果。
   12.jpg
关于图腾输出,从死区时间发生器输出的电平信号,仅有微弱的驱动能力,我们必须将其输出功率放大到一定程度才能有效地推动后续的GDT(门极驱动变压器)部分,Q1-Q8构成了双极性射极跟随器,俗称图腾柱,将较高的输入阻抗变换为极低的输出阻抗,适合驱动功率负载。R10.R11为上拉电阻,增强CD4001输出的“1”电平的强度。有人会问设计两级图腾是否多余,我开始也这么认为,试验时单用一级TIP41,TIP42为图腾输出,测试后发现高电平平顶斜降带载后比较严重,分析为此型号晶体管的hFE过低引起,增加前级8050/8550推动后,平顶斜降消失。
GDT门极驱动电路:
13.jpg
上图为MOSFET的门极驱动电路,采用GDT驱动的好处就是即便驱动级出问题,也不可能出现共态导通激励电平。
留适当的死区时间,这个电路死区大到1.6uS。而且MOSFET开关迅速,没有IGBT的拖尾,很难炸管。而且MOS的米勒效应小很多。
电路处于ZVS状态,管子2KW下工作基本不发热,热击穿不复存在。
从PLL板图腾柱输出的两路倒相驱动信号,从GDT板的J1,J4接口输入,经过C1-C4隔直后送入脉冲隔离变压器T1-T4。R5,R6的存在,降低了隔直电容与变压器初级的振荡Q值,起到减少过冲和振铃的作用。从脉冲变压器输出的±15V的浮地脉冲,通过R1-R4限流缓冲(延长对Cgs的充电时间,减缓开通斜率)后,齐纳二极管ZD1-ZD8对脉冲进行双向钳位,最后经由J2,J3,J5,J6端子输出到四个MOS管的GS极。这里因为关断期间为-15V电压,即便有少量的电平抖动也不会使MOS管异常开通,造成共态导通。注意,J2,J3用以驱动一个对角的MOS管,J5,J6用于驱动另一个对角的mos管。
为了有效利用之前PLL板图腾输出的功率以及减小驱动板高度,这里采用4只脉冲变压器分别对4支管子进行驱动。脉冲变压器T1-T4均采用EE19磁芯,不开气隙,初级次级均用0.33mm漆包线绕制30T,为提高绕组间耐压起见,并未采用双线并绕。而是先绕初级,用耐高温胶带3层绝缘后再绕次级,采用密绕方式,注意图中+,-号表示的同名端。C1-C4均采用CBB无极性电容。其余按电路参数。
电源部分:
   14.jpg
上图为母线电源部分,市电电压经过自耦调压器后从J2输入,经过B1全波整流后送入C1-C4进行滤波。为了在MOS桥开关期间,保持母线电压恒定(恒压源),故没有加入滤波电感。C1,C2为MKP电容,主要作用为全桥钳位过程期间的逆向突波吸收。整流滤波后的脉动直流从J1输出。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
269460
全桥部分:
15.jpg
上图为MOSFET桥电路,结构比较简单,不再赘述。强调一下,各个MOS管的GS极到GDT板之间的引线,尽可能一样长,但应小于10cm。必须采用双绞线。MOS管的选取应遵循以下要求:开关时间小于100nS、耐压高于500V、内部自带阻尼二极管、电流大于20A、耗散功率大于150W。

四.    散热系统
槽路部分的阻抗变换变压器次级以及感应线圈部分,在满功率输出时,流经的电流达到500A之巨,如果没有强有力的冷却措施,将在短时间内过热烧毁。
该系统宜采用水冷措施,利用铜管本身作为水流通路。泵采用隔膜泵,一是能自吸,二是压力高。电路采用的是国产普兰迪隔膜泵,输出压力达到0.6MPa,轻松在3mm内径的铜管中实现大流量水冷。
16.jpg
五.    组装
按下图组装,注意GDT部分,输出端口的1脚接G,2脚接S,双绞线长度小于10cm。
17.jpg
六.    调试
该电路的调试比较简单,主要分以下几个步骤进行。
1.    PLL板整体功能检测。电路组装好后,先断开高压电源,将PLL板JP1跳线的2,3脚短路,使VCO输出固定频率的方波。然后用示波器分别检测四个MOS管的GS电压,看是否满足相位和幅度要求。对角的波形同相,同一臂的波形反相。幅度为±15V。如果此步骤无问题,进行下一步。如果波形相位异常,检测双绞线连接是否有误。
2.    死区时间对称性调整。用示波器监测同一臂的两个MOS的GS电压,调节PLL板C10或C11并联的可调电容,使两个MOS的GS电压的高电平宽度基本一致即可。死区时间差异过大的话,容易造成在振荡的前几个周期内,就造成磁芯的累计偏磁而发生饱和炸管,隔直电容能减轻这一情况。
3.    VCO中心频率调整。PLL环路中,VCO的中心频率在谐振频率附近时,能获得最大的跟踪捕捉范围,因此有必要进行一个调整。槽路部分S1切换到上方触点,PLL板JP1跳线的2,3脚短路,使VCO控制电压处于0.5VCC,W2置于中点。通过自耦调压器将高压输入调节在30VAC。用万用表交流电流档监测高压输入电流,同时用示波器监测槽路部分J3接口电压,缓慢调节PLL板的W1,使J3电压为标准正弦波。此时,电流表的示数也为最大值。这时谐振频率与VCO中心频率基本相等。
谐振时的波形如下图,电流波形标准正弦波,与驱动波形滞后200nS左右。
IMG_5084.jpg
4.    PLL锁定调整。将PLL板JP1跳线的1,2脚短路,使VCO的电压控制权转交给鉴相滤波网络。保持高压输入为30VAC,用示波器监测槽路部分J3接口电压波形形状和频率。此时用改锥在±一圈范围内调整W1,若示波器波形频率保持不变,形状仍然为良好的正弦波。则表示电路已近稳定入锁,如果无法锁定,交换槽路部分J1的接线再重复上述步骤。当看到电路锁定后,在加热线圈中放入螺丝刀杆,这时因为有较大的等效负载阻抗,波形幅度下降,但仍然保持良好的正弦波。如果此时失锁,可微调W1保持锁定。
5.    电流滞后角调整。电路锁定后,用示波器同时监测槽路部分J3接口电压以及PLL板GDT2或GDT1接口电压,缓慢调节W2,使电流波形(正弦波)稍微落后于驱动电压波形,此时全桥负载呈弱感性,并进入ZVS状态。
6.    工件加热测试,上述步骤均成功后,即可开始加热工件。先放入工件,用万用表电流档监测高压电流。缓慢提升自耦调压器输出电压,可以看到工件开始发热,应保证220VAC高压下,电流小于15A。这时功率达到2500W。当加热体积较大的工件时,因为等效阻抗大,须将槽路部分S1切换至下方触点。
至此,整个感应加热电路调试完毕。开始感受高温体验吧。
[/size]

更多的制作细节图片也一并传上 IMG_5093.jpg
IMG_5109.jpg
IMG_5024.jpg
IMG_5113.jpg
IMG_5105.jpg
IMG_5020.jpg
IMG_5096.jpg
IMG_5129.jpg
IMG_5091.jpg
IMG_5112.jpg
IMG_5015.jpg
IMG_5104.jpg
IMG_5116.jpg
IMG_5094.jpg
IMG_5021.jpg
IMG_5108.jpg
IMG_5090.jpg
IMG_5113.jpg
IMG_5102.jpg
IMG_5128.jpg
+10
科创币
wanghailan9
2011-10-22
分都给你了,太详细了 教科书级别
+1
科创币
乖乖乖
2012-07-19
IBM服务器里面带的防静电手套?
+2
科创币
kight11
2013-01-05
完全不懂电的路过,收藏了
+50
科创币
麒麟
2013-04-13
老大威武。。。。。很久不见,一出现就来这犀利的帖子。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
269461
这里是清晰版本的原理图,有详细参数说明!


attachment icon 感应加热原理图.rar 654.19KB RAR 1161次下载 IMG_5146.jpg
IMG_5166.jpg
IMG_5162.jpg
IMG_5175.jpg
IMG_5164.jpg
IMG_5165.jpg
IMG_5132.jpg
IMG_5163.jpg
+16
科创币
xiefeng
2011-12-25
+1
科创币
放牛党主席
2012-06-24
看不懂,但感觉很牛逼的样子
引用
评论
1
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
269487
引用第8楼托尼史塔克于2010-12-16 20:50发表的  :
“整个感应加热电路调试完毕。开始感受高温体验吧。”
鄙人浅薄,不知这装置可以用来做什么?熔融金属铸筹器件是否可以?

可以轻松熔化合适尺寸的铁,铝材质工件,铜电阻太小,显得吃力。
+1
科创币
三硝基二甲苯
2013-01-04
金子轻松加愉快加面带微笑
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
269524
Re:Re:符合中国国情的感应加热DIY教程
引用第11楼飘飘飘于2010-12-16 22:54发表的 Re:符合中国国情的感应加热DIY教程 :
楼主,我想知道A,B处的波形会不会有振铃,毛刺什么的!能发个图上来行不?如果T1用硅钢片铁芯能否做到20K频率?

见图,AB输出电流波形正弦,比较干净。与驱动电压同相稍微滞后。
用硅钢片变压器估计很悬,即便能工作,效率也十分低下。
工业上多用空心铜管变压器,这个实验本来功率才2,3KW,功率很小,我为减小体积,提高效率而采用PC40磁芯。 IMG_5084.jpg
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
269537
引用第15楼飘飘飘于2010-12-17 09:02发表的  :
楼主,你太有才了!未加RC吸收电路居然能做到波形那么干净漂亮!我做的振铃毛刺特大,加RC网络都没办法解决,主变压器我是用三副彩电高压包磁芯做的,不知 是否与此有关?

居然用行变磁芯啊?我手里14付行变磁芯,没一付能到30KHz工作频率,而且漏感较大。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
269539
引用第17楼周小星于2010-12-17 10:31发表的  :
楼主的空载电流有多大的?

其实实际使用中我是换作MOS模块,500V 50A的,为增大多数朋友的DIY欲望,用IRFP460也达到了2.5KW功率。

在大匝比下,220V空载电流达到21A。在小匝比下,空载电流达到37A。
空载很恐怖,感应线圈不水冷的话,几秒就烧红了。而且感应线圈受工频调制振动非常厉害。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
269546
Re:回 20楼(ehco) 的帖子
引用第21楼周小星于2010-12-17 12:39发表的 回 20楼(ehco) 的帖子 :
220V  空载达21A  4000多W的空载损耗 这太大了吧  

这就是串联谐振的弊端。工业上,都有自动反馈保护,检测到空载时,降低驱动占空比或者降低母线电压或者强制移相,降低功率。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
269551
引用第23楼yu4g780于2010-12-17 13:19发表的  :
请问前辈,能否通过这种装置把带磁的304不锈钢消磁啊!

可以的
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
269631
引用第29楼1984bbs于2010-12-18 02:43发表的  :
请问一下电磁炉说明书上一般都让使用铁制和不锈钢厨具,不适用于非铁质锅具,为什么这样?

家用电磁炉,一般都是采用单管同步并联谐振,如果放铝锅,铜锅,电阻率太低,谐振回路几乎等效于短路。开光管承受不了如此大冲击。
所以都有检锅电路,即便你误操作放了铝铜锅,也不会工作。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
269770
引用第32楼博海于2010-12-18 23:56发表的  :
嘿嘿,搂猪你有没有搞错啊,你在哈罗CQ发的竟不比这里发的多真相,你现在要向我们党和人民做个交待说说你是啥思想主义走的是啥道路才行了

这里更有学术氛围,有更多人做实事。
不像点奈特里面,谁都会说,可真能做的也就那几个。
你看那贴沉多深了。
+21
科创币
卡拉什尼科夫
2012-06-24
俺太佩服你了!俺设想了两种点火器,想请你给瞧瞧能实现不?俺想给你发短信,可是一发就提示错误。。。http
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
269775
用MOS模块代替MOS单管,工作1小时基本无发热。
而且功率耐量加大许多,4KW轻松搞定。
加大功率,要加大母线滤波电容,确保电压恒定。
IMG_5213.jpg
IMG_5211.jpg
IMG_5218.jpg
IMG_5216.jpg
+5
科创币
agckl1456789
2012-07-15
E总的电路果然整齐,看起来军工品质
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
269795
引用第35楼虎哥于2010-12-19 07:39发表的  :
楼主的发言也十分适合中国国情,比如说把我放在鸣谢名单的第一位。其实我做的工作最少,甚至提出了错误的建议。另外不论按笔画排序还是拼音排序,我都该排在后面[s:257]。

工件的阻抗很低,且随温度有变化。所以与设计自动天调有异曲同工之妙。
工件越大越厚,工作频率应该选得越低。

呵呵 排名不分先后 不过你的建议很有启发性哦。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
270150
引用第37楼拔刀斋于2010-12-20 14:05发表的  :
主变压器原边也水冷?

是的,否则工作半小时左右,烫得不敢接触。空载更严重。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
270151
引用第39楼jrcsh于2010-12-21 02:37发表的  :
这么强大的转换 用于电磁枪。。。。。哈哈.............

好忙阿 你写的哪个软件到现在都没开始用上

是哦,年终了,什么单位都很忙。我这几天也忙得头炸了。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
270184
这个让我很郁闷啊,从现象看,是次级的强电流在初级线圈中产生涡流,导致线圈严重发热。因为如果我初级接抽头的时候,悬空的一部分初级线圈(也就是最外层线圈)被加热到冒烟。
不光是线圈,连固定电容的铁片和铁螺钉都被烧变色了。
看来走线不很科学。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
270410
体验了一次铸造
用的铝合金型材熔炼浇注
坩埚是球墨铸铁车制的。 IMG_5230.jpg
IMG_5237.jpg
IMG_5236.jpg
IMG_5231.jpg
IMG_5233.jpg
IMG_5232.jpg
IMG_5235.jpg
IMG_5234.jpg
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
14年1个月前 IP:未同步
271388
引用第52楼◤◢◣◢◣◥于2010-12-30 08:04发表的  :
有个问题,为什么需要4个驱动变压器?感觉2个就够了,在同一个变压器上饶两个次级不行吗?

一个就够了 但是磁芯体积大了 高度也高了
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
13年3个月前 IP:未同步
331116
引用第66楼bga201于2011-10-22 22:02发表的  :
不错。我元件基本有,老电子爱好者了。就是没地方实验。

其中哪种加热线圈可以用很粗的铜线吗。因为便宜好找。我TB上买了点16平方的铜线。做个1KW的线圈够了吗。

磁芯10年前买了个大大的,没用过。哈哈

不建议铜线
1.铜线实心的,同直径的要比铜管贵许多,高频趋肤效应下实心的浪费了
2.铜线不好进行水冷,铜管可以直接通水,这个可是要通过几百安的电流啊。冷却不好一会就黑了
3.铜线硬了,不好弯折
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
13年1个月前 IP:未同步
344479
引用第76楼tramrax于2011-12-15 12:03发表的  :
求教:4KW输出,加热铜线圈内径400mm,线圈内放置壁厚10mm,内径300mm,304不锈钢桶,桶内分散放置直径5mm304不锈钢金属球(球与球不接触),请教一下:各个金属球会发生感应加热效应吗?如果有感应效应,不同位置的小球的感应热有没有明显差别?另能替我制作4KW感应加热电源吗?如果可以联系我QQ:11221584,谢谢。

如果存在金属容器,则内部小球中的感应电流小到可以忽略的地步,基本是靠容器热传导才能发热。
另,俺木有时间帮您做了。不好意思。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
12年11个月前 IP:未同步
365784
Re:回 77楼(ehco) 的帖子
引用第91楼rudolf于2012-02-10 12:11发表的 回 77楼(ehco) 的帖子 :
有个问题不明白问问楼主,并联谐振时阻抗最大电流最小,这个时候加热效果应该不好吧?

并联槽路中,如果Q足够高,那么空载谐振时,驱动器仅仅提供槽路的纯R热损耗而已,此时表现在驱动电路的电流是很小的。但是这并不代表槽路内部的震荡电流幅度,理想情况下,内部环流的大小等于Q倍驱动电流。也即是说,如果Q=100,那么驱动电流为1A时,内部环流为100A,在这么大的安匝下,加热工件不成问题。
现在看带载的情况,忽略因为改变磁导率而导致的频偏,单纯从能量的角度来看。工件发热势必要拉取能量,这个能量来自感应线圈,工件拉取的功率越大,驱动电流越大。疑似一个自适应的过程。 所以不存在你所说的谐振时效果不好。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
12年11个月前 IP:未同步
365790
Re:回 1楼(ehco) 的帖子
引用第92楼rudolf于2012-02-10 17:02发表的 回 1楼(ehco) 的帖子 :
1、如果串联谐振接恒流源,提高电源的电压,而保持电流不变,槽路电流不变,槽路电压U=IXZ(谐振时,R=Z),电压U也不变,而电源输出功率明明是增加了的,LC也是谐振的,那这部分电能跑到哪里去了?
2、如果并联谐振接恒压源,槽路电压U=IX(L/CR),电流I=U/R(R为等效电阻),U和R是不变的,所以电源输出增大而槽路功率并没有增大。

我不知道上述计算哪里不对,纠结了老长时间。望各路英雄指导下。

对于你这个观点,是钻了死胡同了。你忽略了激励源本身的内阻。
恒压源用串联谐振,恒流源用并联谐振,这个基本设计规则是根据功率最大传递的阻抗匹配关系而来。
恒压源,等效内阻为0,而串联谐振的谐振点处呈现的阻抗也是最低的,理论能传递最大的功率,提高电源利用率。
恒流源,等效内阻为+∞,而并联谐振的谐振点处呈现最高的阻抗,能传递最大的功率。

您也可以这样理解,并联谐振回路,谐振时,阻抗呈现无穷大,那么如何在这样一个高阻抗的“器件”中激励起足够幅度的电流呢? 很显然,只有提高激励电压。然而恒压驱动的端电压是固定的,没法改变。。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
12年11个月前 IP:未同步
365791
Re:回 77楼(ehco) 的帖子
引用第91楼rudolf于2012-02-10 12:11发表的 回 77楼(ehco) 的帖子 :
有个问题不明白问问楼主,并联谐振时阻抗最大电流最小,这个时候加热效果应该不好吧?

建议您看看这篇帖子,有点哲学味道的。
XXXXXXXXXXXXXXXXXXXXXXXX/t/39218
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
12年9个月前 IP:未同步
387855
引用第107楼海蓝于2012-04-17 15:51发表的  :
我是新手,请教版主,我也准备做这样的感应加热。现在PLL部分PCB图已经画好,想问的是:我主要用于铜管焊接(铜管直径3mm--8mm),在后级怎样改制效率最理想?

加热这么细的紫铜件,需要提高频率。后级没什么关系吧,注意好阻抗匹配即可。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
12年4个月前 IP:未同步
445485
最近琢磨着弄一个0-10KW可调,20-100KHz高功率密度的感应加热装置,以供局部钎焊用。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
12年0个月前 IP:未同步
486941
回 136楼(art) 的帖子
您的方波和正弦波分别是哪里测量的?如果是槽路的驱动电压和电流,那偏离谐振点太多了,功率因数不高,需要调整PLL环路移相电阻。
还有,您阻抗变换变压器的变比太高了,导致加热功率不足,适当增加一点次级匝数,或在保证磁芯不饱和的情况下适当减小初级匝数可以解决。
再次恭喜实验成功。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
12年0个月前 IP:未同步
486950
回 137楼(art) 的帖子
俺前几个月又试验成功了基于ARM和CPLD的全数字化感应加热驱动控制
真正实现了移相角、死区、大动态范围谐振点自动匹配、数控偏频调功以及各种关键保护
苦逼于大功率的淬火变压器一直没时间制作
等年后时间充裕点再上细节贴,如果有兴趣到时送您两块PCB板玩玩

CPLD&ARM主控板
DSC00073.jpg
DSC00079.jpg

高速IGBT驱动板
DSC00072.jpg
DSC00080.jpg

驱动套装
DSC00076.jpg
+1
科创币
yanli12321
2013-01-11
E菊V587
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
12年0个月前 IP:未同步
486952
感谢上次与habenren朋友的争论,让俺对GDT传输的本质有了进一步的认识
现在做出的驱动板,驱动2MBI150-050  50A500V的MOS半桥模块 已经达到逆天的
上升时间 87.5nS,下降时间100nS,驱动CM150的上升为130nS,下降为140nS。
同样也做到了+15 -8的理想驱动电平。再次感谢hanbren网友。
DSC00052.jpg

   DSC00055.jpg
+200
科创币
奇侠
2013-01-11
之前一直听闻ehco大师的高速驱动板。不止是否愿意分享下呢?
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
ehco作者
12年0个月前 IP:未同步
486960
回 141楼(art) 的帖子
如果正弦波是电容上的取样,那波形就是正确的
电感和电容的电压都相对于驱动方波有±90°的移相
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论

想参与大家的讨论?现在就 登录 或者 注册

所属专业
上级专业
同级专业
ehco
老干部 学者 机友 笔友
文章
114
回复
1633
学术分
41
2007/07/11注册,7时33分前活动

撸起袖子加油干!

主体类型:个人
所属领域:无
认证方式:手机号
IP归属地:未同步
文件下载
加载中...
{{errorInfo}}
{{downloadWarning}}
你在 {{downloadTime}} 下载过当前文件。
文件名称:{{resource.defaultFile.name}}
下载次数:{{resource.hits}}
上传用户:{{uploader.username}}
所需积分:{{costScores}},{{holdScores}}下载当前附件免费{{description}}
积分不足,去充值
文件已丢失

当前账号的附件下载数量限制如下:
时段 个数
{{f.startingTime}}点 - {{f.endTime}}点 {{f.fileCount}}
视频暂不能访问,请登录试试
仅供内部学术交流或培训使用,请先保存到本地。本内容不代表科创观点,未经原作者同意,请勿转载。
音频暂不能访问,请登录试试
支持的图片格式:jpg, jpeg, png
插入公式
评论控制
加载中...
文号:{{pid}}
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

加载中...
详情
详情
推送到专栏从专栏移除
设为匿名取消匿名
查看作者
回复
只看作者
加入收藏取消收藏
收藏
取消收藏
折叠回复
置顶取消置顶
评学术分
鼓励
设为精选取消精选
管理提醒
编辑
通过审核
评论控制
退修或删除
历史版本
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}