首先,感谢科创好友:@zhang1209、@机战王x 、@时代系、@头疼脑壳昏的技术支持。在讨论SCR+IGBT的混合开关磁阻方案的偶然中,zhang1209 推荐了一个薄膜电容,本来他是想让我作混合开关炮的储能电容,我突然发现这个方方正正的薄膜电容似乎能量密度不低,参数是:宽56厚45高63mm,188g,容量140uf,耐压900伏,猜它实际耐压应该能到1200V。算出储能密度可达0.6j/cm³(铝电解电容也就1.2~1.8j/cm³)、0.53j/g。
也突然联想到似乎有薄膜谐振磁阻这么个东西,所以觉得这会是个好东西,相关理论请参考《薄膜谐振关断磁阻(理论篇)》。
所以就想,虽然薄膜电容体积比较大,储能密度只有铝电解电容的1/3~1/2。但应用在磁阻上如果效率能是传统的铝电解电容无关断磁阻的2~3倍,那至少在体积方面上能持平,但因为储能少,能带来诸多好处:比如用一样功率的CCPS,单次充能时间短,射速高,发热量小,不像铝电解电容一样对温度敏感(大多数铝电解电容的内阻会随着温度的降低而升高)等等。话就不多说了,其他具体的好处请读者慢慢体会,上精华部分:
电容实测:
电路:
如你所见,这个磁阻亦由光电驱动,电路复杂程度与无关断磁阻相当,因为存在反接的可控硅Q2 Q4,所以需要用到隔离模块,给光电V2 V4独立供电。
在发射的过程中存在反向高压,所以充电电路上需要用到继电器断开,否则会烧毁ZVS上的整流桥和隔离二极管D1 D2。
在实验过程中,发现一个很稀奇的现象,就是如果给可控硅长触发信号,即便可控硅两端是几百伏的反压,电容所储的电能会在几秒钟内耗光,即可控硅反向漏电流加大。而发射开关上的电容C3就是为了提供脉冲信号而存在。
如何使用模拟器得到仿真数据?
谐振磁阻.mp4 点击下载
我所得到的数据:
当时得到的这个数据,主要的想法就是在一个电容带两级线圈的情况下,尽量保证弹丸的加速度与出速(即把两级线圈加支架的长度不超过电容长度的情况下得到较高的出速),并没有特意地去追求效率,单纯追求效率那只需暴力加粗线径(如果线圈长度与外径与上述表格一样的情况下,余压会高许多而单级出速降低),一个电容多带几级就可以实现。
线圈绕制:
预计总长度30cm。
线圈数据:
搭棚电路板:
看着挺杂乱的吧?其实我感觉还好。因为是试验模型机,试水用的,作为先驱者的它我觉得没必要做得太精致。
弹丸:
一开始实验时只做了两级,发现实际数据的偏差还在可接收范围内,继而做到了四级,发现数据可用,出速偏差不大,最后一下子接好了十级。
VID_20221012_223644.mp4 点击下载
VID_20221017_211435.mp4 点击下载
VID_20221024_212211.mp4 点击下载
VID_20221022_135025.mp4 点击下载
但最后发现,实际出速与仿真有挺大的差距。
在分析后发现,其实可能是后面的级数每级的初速度偏低所导致,线圈的绕制算是一次性搞好的,所以参数没办法再修改。第一组电容的动能增量:4.78,第二组9.08,第三组8.67,第四组8.30,第五组7.63,明显与模拟动能的增量的趋势不符(4.99,9.31,10.73,11.55,12.09)。出现这个现象,可能与线圈工艺有关,可能是模拟器失真的问题,可能可控硅反向恢复时间长与漏电流大,可能是短脉冲大电流,钢管涡流损耗严重。因为在实际中,充1000伏只能剩580--600伏反压,达不到模拟器的640伏反压。所以需要查清能量其原因,优化线圈参数,迭代升级,有望用五电容十级能把8*20蛋做到出速110m/s和15%效率。
主体部分长30*宽4.5*高11cm,重1.6kg。至此,效率12%,2秒一发的可控硅磁阻就做好了,虽有些许遗憾,不太完美,就让感兴趣的电炮好友帮我圆了吧。
200字以内,仅用于支线交流,主线讨论请采用回复功能。