Kumisa III无大环路负反馈耳放——译介
mass_lynnxy2006/02/28电子技术 IP:四川

        ☆Kumisa III Headphone Amplifier☆
           by Benny Jørgensen

【译者注:Kumisa III是XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/的众多优秀耳机放大器中的一款别出心裁的制作,它摒弃了常见的环路负反馈,却拥有许多负反馈放大器难以比拟的优异特性。作者在设计之初,就考虑到了“反馈端信号滞后于输入端”这个常被人忽略的事实,从而提出了“自由失真”和“零环路反馈”的设计思路。从电路形式上看,设计者取得成功的关键是:(1)采用全对称的结构是保证低非线性失真特性的基础;(2)A类工作状态,较大的偏置电流是消除交越失真的因素;(3)无环路负反馈是避免瞬态互调失真的关键;(4)元件的精心选择确保了放大器足够的带宽,既提高了放大器的速率,又进一步降低了失真。】



【译文】正如其他设计者一样,我也希望能设计出世界上最好的耳机放大器。要想做到这一点却有很多问题,比如电路形式上是用“单端”还是用“全对称”?是用大环路负反馈还是局部负反馈甚至无反馈?是用分立元件还是用集成电路?

单端电路的失真比全对称电路大,它们的音乐味就来自于这些失真,有的人可能说单端放大器的音色更加丰富多彩。使用全对称技术,一只三极管上出现的失真会或多或少地被它的互补三极管抵消。先前的版本里我使用AD844得到了满意的结果,这次我决定用全对称的电路来完成设计。

从理论上说,负反馈并没有什么不妥,但是从听感上大家都反感它。反馈通常是用来矫正放大器的失真,为什么不尝试设计一种“自由失真”放大器来替代它呢?我们试想一下,如果失真是出现于反馈环的参考点上(*+-相输入端)会有什么结果,(*放大器怎么能区分)哪些是由两只三极管产生的呢?反馈放大器总存在延迟,信号从输入端到输出端,然后再进入反馈端,大约需要100纳秒,在此时间内输入信号已经不是反馈端要修正的信号,而是一个新的信号了。

在Kumisa II中使用了AD844,虽然取消了DC伺服电路,电流源也用一只特殊的三极管提速了,但是反馈延迟的问题仍然存在。把局部反馈改成环路反馈,降低了失真和输出阻抗,然而却带来了其他问题。

在Headwize上发表Kumisa II不久,我收到了一封讨论“反馈”的Email,而我的一位朋友也问我“为什么不用前馈来代替反馈”。这让我想到了一辆凯迪拉克——拥有大型V8发动机,虽不能达到最大的速度极限,但无论上坡下坡总能维持相同的速度。按照这个理论, “反馈”并非唯一的思路,这次我采用了另一个方法——无负反馈。

Kumisa III的设计目的是:高带宽和高转换速率,因为它能够为避免高频段发生的相位失真提供更高的安全保证,而且我喜欢低阻抗和大电流裕量。根据上述要求,我认为只有使用电流反馈型运放的电路电路形式,其特点是快速和低失真,而且为了避免产生交越失真,放大器将工作于大约7W功耗的纯甲类状态。



该放大器在原理图见图1,Q2和Q3构成输入级,形成标准的“共射”放大器。流经Q2和Q3集电极的电流为2.5mA(在两只1.8K电阻上分别产生4.5V电压)而流经下一放大级(Q7和Q8)的电流为11.4mA(在两只390Ω电阻上分别产生4.44V电压)。Q5和Q6构成一个电压源,其发射极电压分别为+2.7V(Q5)和-2.7V(Q6),该电压在Q2与Q6之间的820Ω电阻上产生约2V的电压降(另外一路在Q3与Q5之间)。在无输入信号的静态情况下,流经Q2和Q3的电流均为2V/820Ω=2.4mA,这种Q2与Q3上的电流平衡随输入信号而对称波动,如果输入+1V电压,将在Q2上产生3V/820Ω=3.7mA的电流而Q3上则产生1V/820Ω=1.2mA电流。(**)

Q7和Q8上的390Ω电阻确保上述的电流波动不少于4mA,我相信这样高的静态工作电流足以让所有的三极管永远工作于各自的线性放大区内,并一直处于纯甲类状态。只有末级才会出现从纯甲类变成普通的AB类的情况,那也只有在输出电流超过静态电流时才会发生。高电流设计会使这些三极管产生一定的热量,但是不会超过35°C。

Q1/Q7和Q4/Q8形成两个电流镜电路。Q1是Q7的补偿(*温度)二极管,Q4是Q8的补偿(*温度)二极管,Q1的Vbe与Q7的Vbe相互中和使其误差小于60mV,使本级成为具有4.6倍电流增益的电流镜。在输入电压为1V的情况下经过Q2的电流为3.7mA,而流经Q7的电流为17.1mA,因为电流增益为4.6倍左右,此时流经Q3的电流为1.2mA而经过Q8的电流为5.5mA。此时驱动后面电阻网络(1.8K+1.8K+33K+33K=853Ω)的电流为17.7mA-5.5mA=11.5mA,三极管Q9用于增加偏置电压,推动管和输出管吸收这个偏置电压,最终在输出端上产生的输出电压大约是11.5mA*853Ω=9.8V,放大器的(*电压)增益为9.8倍(实测值略小)=19.8db。

我使用BD135(Q9)来调整输出缓冲器的偏置电压,目的是防止三极管产生热量时的“末级失控”(*静态电流飘移),即Vbe下降引起静态电流上升,三极管温度进一步升高,从而Vbe更加下降引起静态电流再次升高(*的恶性循环)。将Q9贴紧(*输出级管的)散热器(*形成热耦合),利用Q9的Vbe来控制末级电流,道理是:输出管发热导致其Vbe下降,而此时(*温升同样传导到Q9上,引起)Q9的Vbe同步下降,进而导致偏置电压同步降低,这个原理使得输出级的集电极电流与其温度无关。在我的作品中,额定电流从53mA上升到了57mA,这个波动是可以接受的。如果将Q9与散热器分离,末级静态电流将超过77mA。

伺服网络用来消除Q7和Q8之间的失衡。比如,当输入为0V而Q7上的电流为10mAQ8上的电流为12mA时,DC伺服电路将提供-2mA来实现平衡,伺服电路工作于独立的反馈环中。放大器设计成无负反馈的优点是能够避免输出信号串入输入端。DC伺服电路从输出端取出低于10Hz的部分来修正输出端的电位。



对于一个好的放大器而言,电源部分是最重要和最需要进补的部分。首先与市电网相连的是一只电网噪声滤波器,在变压器后面的每只整流二极管上用470nF的聚脂电容并联,随后是两只电解电容器,从这里分别进入两个不同的部分。通过4.7Ω电阻(可以选用10Ω以下阻值的)进入下一个电解电容器。这一组RC滤波器上限频率为3Hz,切除了噪声。在一只变压器的条件下,从这里实现了双单声道供电。另外用了一只47Ω(只能小于220Ω)来实现放大器与电源的“地隔离”。

在10000uF大电解之前的电阻减慢了电源电压上升,DC伺服电路控制输出端的直流电位,的电源冲击声减小到最低水平,避免它损坏耳机。这款电源在空载时电压为±25 V,接上放大器后电压为±24V。放大器的每一个声道静态电流为40mA,在我的制作中调节到了0.1A。放大器在±20V到±30V供电时,均能正常工作(即使用2*14V到2*20V的变压器)。

我没有使用稳压二极管来调整电压,因为它们本身就是一个噪声源,我认为使用稳压二极管来调整电压实际上是拔苗助长。用两只电阻一只电容构成的RC滤波器所得到的直流电压的品质远远优于单纯使用电容滤波得到直流电压。在我的制作中,它们构成了2.2Hz的低通滤波器,因此电压非常稳定,纹波在可听范围之外。
关于滤波器的资料请参阅: XXXXXXXXXXXXXXXXXXXXXXXX/pdf/doc191.pdf

The Construction



在电路板上,我用了音量电位器安装到尽可能接近信号输入端的位置,左右声道放大板在它的两边,DC伺服电路则置于它的背后,在左上方是AC通路的滤波器和30VA变压器,底部是6枚10000uF的大容量快速电解电容。



机壳外面的连接器选用4只Monaco的RCA座和一只Neutrik的耳机插座。4只RCA座分别作为左右的输入/输出,这个耳机放大器也就可以放到CD与我的AudioLab功率放大器之间了,虽然Monaco的RCA座的价格还不能称为极品,但是音质却给我留下了极好的印象。虽然在以前的制作中我都是采用无名的接插件,但是我并不推荐这种用法。另外我使用了最新款的Argento线,这是表现最好的,既没有任何声音染色、也不会损失任何细节。



Q9和Q10、Q11(*应该是Q12、Q13)要安装在散热器上(热阻为5K/W的小型散热器),伺服部分的OPA2134使用8脚DIP插座安装,你可以用其他FET输入的双运放替代,如OPA2604、TL072、OP282等等。你可以致电LC Audio Technology购买元件。2001年1月配齐双声道所需的三极管和运放(6 * 2SC2389, 6 * 2SA1038, 4 * 2SC2705, 4 * 2SA1145, 2 * 2SD1763, 2 * 2SB1186 , 1 * OPA2134)的价格是$16.33。

因为我没有考虑在输出端使用继电器,所以在开机瞬间会有轻微的“卟”声,我认为在输出端不使用继电器会有更好的音质。既然已经把大量的资金使用在三极管和接插件上,再在输出端使用一只连接性能不佳的继电器岂不是一个笑话。我认为这点“卟”声是很小的而且也不会对耳机造成损害。
Vbias BD135 (Q9) Vbe of Drivers(Q10, Q11) Vbe of PowerTransistors(Q12, Q13) Idle current
Cold 3.05 V 0.68 V 0.67 V 53 mA
Hot 2.92 V 0.66 V 0.61 V 57 mA
Hot, but BD135 not connected 3.05 V 0.66 V Lower than 0.61 V More than 77 mA


我把一些测试数据放在表中供仿制者对照检测。表中的电压值都是对“地”测量的。由于我没有使用稳压电压,所以与您的实测值可能会有一些偏差。最重要的一点是:这些电压值必须是对称的。DC伺服的输出电压范围是±11 V之间,在我的制作中是:左声道+4.5V、右声道-0.85V。放大器输出端电位分别是-0.3mV和+0.8mV。运用欧姆定律计算得到静态电流为:0.15V/3.3Ω=45.5mA。

为了安装Neutrik耳机插座,我开了五个小孔,然后用锉把中心孔扩大。Kumisa III的功耗只有7W,工作1-2小时仅有一点温升,所以我舍弃了电源开关,让它一直处于开机状态,从而省略了褒机的过程(虽然它能在开机的第一秒钟就能开声,但是要数小时后才会进入最佳状态),这是最好的办法。

Measurements 测试



以下测试波形中:蓝色为输入波形,红色为输出波形。
Output:
额定输出测试:

1KHz正弦波输入、50Ω负载条件下,Kumisa III的最大输出为7.76Vrms。

32 ohm 50 ohm 150 ohm 600 ohm
Output power 1.8 W 1.2 W 0.4 W 0.1 W
Class A power 0.058 W 0.09 W 0.4 W 0.1 W



噪声测试:
噪声测试借助于一只20倍的外接放大器完成(外接放大器输出端噪声电平为207 uVRMS)
因此Kumisa III的噪声电平大概是 ((2882 - 2072)0.5) / 20 = 10 uVRMS,相当于在1VRMS输入时信噪比为100dB。更重要的是,这些噪声主要成份是:交流50/60Hz和其他白噪声。



速度:
在这个测试中,我们给它馈入了1MHz的方波信号,从中可以看到这个放大器的快速特性,虽然输出出现了少于50nS的延迟,但是由于没有使用负反馈,所有这个延迟不会带来负面的影响。
最重要的是放大器的实测转换速率(SR)达到了令人鼓舞的185V/uS。



电抗性负载特性测试:
使用10nF电容器作为电抗性负载的条件下,在100KHz方波输入时它依然保持着很高的转换速率而出现的振荡能够很好地衰落。***,输出波形从-10V到+10V的上升时间少于400nS,因此在10nF容性负载下,转换速率为50V/uS。

在输出1MHz方波时,放大器出现了明显的振荡,但是振荡依然呈现出衰落的特征。(在此测试中取掉了10pF电容,因为它也是一个输出阻抗成份)



DC伺服电路测试:
伺服电路的响应时间大约是400mS,它是一个截止频率为2.5Hz的低通滤波器,不会对音频有什么影响。




低通滤波器仅工作于小信号输入状态,因为它仅工作于狭窄的通带内。当然,如果你能通过元器件的挑选来消除放大器输出端的直流漂移,也可以省略掉它。
我用的是OPA2134(只能选用FET输入型的运放,比如TL072、OPA2604等等),实测输出端直流电位小于1mV,使用其他的运放可能会使这个漂移高一些,但是只要低于10mV就很好了。

频率与输出阻抗特性图:
我们看到由于直流伺服电路的作用,从1Hz到47Hz增益有一点提升(仅0.46dB)。


-3dB带宽为1Hz至10MHz,输出阻抗从10Hz至100KHz为平滑的5Ω。

The Results
结束语

在我设计这个放大器时,我想到这么大的电流流经所有的三极管,它们必然会产生一些热量。因此在达到它们的工作温度前,它大概需要半个小时的热身才能表现出应有的辉煌和才干。我猜想这是因为它首先是一个无负反馈的设计、其次它工作于纯A类状态吧。我必须承认在Kumisa II中我使用了最好的运放,而在Kumisa III中使用普通的晶体管和无反馈的设计得到了更好的效果。
我的耳机是Koss R/80和Senheiser HD 565 Ovation,因此诸如“带宽”、“dB”和“失真”都显得不那么重要。
对音乐的表现力是放大器设计的首要因素,它应该能将我们带到音乐的海洋里、陶醉于音符的跃动之中。从布鲁斯体会忧郁、从莫扎特的音乐里体会快乐。当我聆听Dicte 或 Elaine时,我能感觉到寒流在身旁涌动。一款放大器的这些表现要远比极大的带宽、极低的噪声和失真等指标更为重要,因为它是服务于我们双耳的。Kumisa III特别适合表现象JASS乐一样现场录制的音乐。每当音乐响起,它可以让你沉浸在如诗的夜晚,你也许会感恩于音乐给我们带来的安宁和放松。
我需要一个没有偏见的评价,我请毕业于高校音乐系的妻子,她正在Odenuse学习生物医学。她也认识三极管,但是不会使用。她的评价是Kumisa 的这个版本对音乐有着极好的解析力,并且能够完美的诠释出录音的风格。我们有一曲教堂里詠诗班圣歌的现场录音,在聆听时我们仿佛置身于这个教堂之中,就如同平时在JAZZ俱乐部和音乐会现场一样真实。Kumisa III真的能让我们在聆听现场录音时充满欢喜。

原文及图片引至XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/projects/XXXXXXXXXXXp?file=jorgen2_XXXXXXm

输入C2389/A(120V,0.05A0.3W,140M,2.5p)可以用C2856/A1191、C2240/A970代换(C2856:120V 0,1A 0,4W 130M 3,2P,NF:MAX=1.5db C2240: 120V 0,1A 0,3W 100M 3P,NF:MAX=2db)

865_5011_391.jpg

865_5011_388.gif

865_5011_387.gif

865_5011_390.jpg

865_5011_389.gif

865_5011_392.jpg

865_5011_395.gif

865_5011_396.gif

865_5011_393.gif

865_5011_394.gif

865_5011_399.gif

865_5011_397.gif

865_5011_398.gif

来自:电子信息 / 电子技术
2
已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也
mass_lynnxy 作者
19年1个月前 IP:未同步
2531
原文

The Kumisa III Headphone Amplifier
by Benny Jørgensen

My goal is, like many other designers, to build the best headphone amplifier in the world. The problem is just that there is so many paths. Should the amplifier to be built as \"single-ended\" or \"symmetric\"; and should there be global feedback, local feedback or no feedback at all; and should the amplifier be built using discrete components or integrated circuits.

While single-ended designs have more distortion than symmetric amplifiers, they are typically more music-like in their distortion. Others might say that single-ended amplifiers color the music. Using symmetric technique, we know that a error in one transistor will more or less be corrected by its corresponding transistor on the \"other side.\" The previous versions used the AD844 and I\'m pretty pleased with it. I have decided to continue using a \"symmetric\" design.

Using mathematics, nothing bad can be said about feedback, but common-sense arguments can be found against using it. Feedback is normally used to correct errors occurring within the amplifier, but why not try to make an \"error-free\" amplifier instead. What will the result be if there\'s a error in the reference in the feedback loop, which is typically made with two transistors? There is also a time delay in the feedback amplifier. It takes around 100 nS for a signal to travel from input to output, and back to the other input. During this time the signal on the input has changed and feedback actually corrects a new signal with a signal from the past.

In the Kumisa II, the AD844 was still used, but this time the feedback loop went all the way from output and back to input. The DC servo was removed and the current source was made faster, using an extra transistor. The local feedback was turned into global feedback, lowering the distortion and output impedance, but that also introduced some other problems.

Not long after Headwize had published the \"Kumisa II\", I received an email telling me something about feedback, and a friend of mine asked me why I didn\'t use feedforward instead. Then I thought about a Cadillac, having a big V8 engine, not for achieving the maximum speed, but to be able to maintain the same speed whether it goes up a hill or down again. Using this philosophy, feedback would become unnecessary. Another argument for using non-feedback.

Design goals for the Kumisa III: I like high bandwidth and slew rate, because it gives a high security margin before phase errors appear in the high frequencies. Also I like low output impedance and high current capacities. Looking at these demands, I thought of current feedback opamps as the only possibility. They are typically fast and having low distortion. I hate crossover distortion and therefore all my amplifiers run real class A, using around 7 W for the entire amplifier.

The Circuits


Figure 1

The amplifier schematic is shown in figure 1. Q2 and Q3 are the input transistors. They are set up in a standard \"ground emitter\" connection. The current through the collectors of Q2 and Q3 is 2.5 mA (giving 4.5 V over the two 1.8 Kohm resistors) and 11.4 mA (4.44 V over the two 390 ohm resistors) through the next stage (Q7 and Q8). Q5 and Q6 are a voltage source. At the emitter, is there either +2.7V (on the Q5) or -2.7V (on the Q6) This way the voltage over the 820 ohm resistor connected between Q2 and Q6 (the same with Q3 and Q5) is around 2 V. If there is no signal (0 V) on input the current through Q2 and Q3 is 2V / 820ohm = 2.4 mA on booth. This balance is moved if a signal is added to the input. If 1V is added to the input there will flow 3V / 820ohm = 3.7 mA through Q2 and only 1V / 820ohm = 1.2 mA through Q3.

The 390 ohm resistor on the drivers (Q7 and Q8) make sure that the current through these is always at least 4 mA. Using such high currents I´m sure that all transistors are used in their linear working zone and that they always are running pure class A. Only the output transistors can go from pure class A (push-pull) to ordinary class AB, and that only happens when the output current exceeds the idle current. This high current makes the transistors a little warm, but not more than 35 degrees C.

Q1/Q7 and Q4/Q8 make up the 2 current mirrors. Q1 is a diode compensating for the loss in Q7 and the same goes for Q4 and Q8. The Vbe of Q1 and the Vbe of the Q7 neutralize each other within an error of 60 mV, making this stage a good current mirror with 4.6 times current gain. At 1 V input the current through Q2 is 3.7 mA and then the current through Q7 is 17.1 mA since the gain is around 4.6 times. The current through Q3 would in the same situation be 1.2 mA and 5.5 mA through Q8. The current forced on to the resistor network (1.8 Kohm + 1.8 Kohm + 33 Kohm + 33 Kohm = 853 ohm) is 17.1 - 5.5 = 11.5 mA. The Q9 adds some bias voltage and the driver transistors + output transistors eats the bias voltage again. The voltage on the output will then be around 853 ohm * 11.5 mA = 9.8 V. The gain is 9.8 times (a little less in practise) = 19.8 dB.

I used a BD135 (Q9) to regulate the bias voltage on the output buffer. I did this to prevent \"terminal runaway\", which occurs when a transistor gets hot. When this happens the Vbe falls and thereby the idle current rises, the transistor gets hotter and then again the Vbe falls, and then again the idle current rises and so on. I use the Vbe on the Q9, that is connected to the heatsink to regulate the bias voltage. When the transistors get hot the Vbe falls and this is also true for Q9, which leads the bias voltage to fall at the same speed. In theory, this will cause a constant idle current flowing through the output transistors no matter what temperature the output transistors have. In my case, the idle current only rises from 53 mA to 57 mA, and that´s within the margin that I accept. If Q9 wasn´t connected to the heatsink, the idle current would be over 77 mA instead of 57 mA.

The servo works by balancing a misbalance in the current flow between Q7 and Q8. For example, when the input = 0V and current through Q7 is 10 mA and and Q8 is 12 mA, then the DC servo supplies -2 mA to create the balance. The servo has it’s own feedback loop but doesn’t work in a feedback loop. The amplifier is a nonfeedback design because it doesn’t take a part of the output signal back to the input. The DC servo on the other hand takes the low frequency part of the output and use that to correct the output voltage. This must be some form of feedback, though it\'s only active under 10 Hz.


Figure 2

The power supply (figure 2) is the most important part of a good amplifier and here there have been some improvements. The first thing the net supply meets is the net noise filter. After the transformer I have bypassed the diode bridge with a 470 nF polypropylene capacitor, then on to the first two electrolytic capacitors. This is where the power supply is split up,into two different paths. Through a 4.7 ohm resistor (value not critical, but under 10 ohms) and on to the next electrolytic capacitor. This way I have a low pass filter of 3 Hz, cutting all noise away. This way I get some (maybe all) of the advantages of dual-mono on one transformer. I use a 47 ohm resistor (just use under 220 ohms) in the ground as well, to isolate the first part of the net supply from the rest of the amplifier.

The resistors before the big 10000 uF electrolytic capacitors allow the power to come up slowly, giving the DC servo time to control the output, and thereby minimizing the \"pop\" at the output to something that is too small to harm the headphones. The power supply is giving around ±25 V out when it´s unloaded and just over ±24 V when it´s connected to the amplifier. Each amplifier channel uses around 40 mA + idle current and in my case it sums up to 0.1 A. The amplifier itself can tolerate supplies from ±20 V to ±30 V allowing the use of transformers from 2*14 Vac to 2*20 Vac.

I have not used any zener diodes for voltage regulating, since they are noisy. Using zener diodes for voltage regulating is overkill. Two resistors and a capacitor are doing the job better, remembering that it´s really rare that a certain voltage is needed. Normally it´s a constant voltage that is needed, and that is provided by the capacitor. In my case, they form a low pass filter at 2.2 Hz and thereby the voltage is more stable than the ear can hear.

More information on better filters: XXXXXXXXXXXXXXXXXXXXXXXX/pdf/doc191.pdf

The Construction

For the parts layout, I have placed the volume potentiometer as close to the input as possible, with a channel on either side of it. The DC servo is placed just in the back of the potentiometer, close to both outputs. On the left top, the Mains AC passes through a noise filter and into the 30VA transformer. At the bottom are the power supply capacitors, consisting of 6 big and fast 10,000 uF electrolytics.

The connections to the outside world are going through 4 phono plugs from Monaco and a Neutrik headphone jack. The reason for using 4 plugs, two left and two right, is that I use it between my CD player and my Audiolab amplifier. This way I use them as input and output. These plugs are not in the high-end price area, but still I\'m very impressed by them. In the previous versions I used \'no name\' plugs, but I don\'t recommend that. I have used \"Argento\" cables, just as the last time, and this is because they are the best. Nothing more, nothing less.

Q9, Q10 and Q11 should be heatsinked (small 5k/W heatsinks and the chassis). The OPA2134 opamp for the servo can be replaced by any 8-pin dual opamp with a FET super beta input stage like the OPA2604, TL072 , OP282 and probably many others. The semiconductors can be ordered from LC Audio Technology by email. An antistatic bag with 6 * 2SC2389, 6 * 2SA1038, 4 * 2SC2705, 4 * 2SA1145, 2 * 2SD1763, 2 * 2SB1186 and 1 * OPA2134 costs $16.33 (= 17,30

引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论

想参与大家的讨论?现在就 登录 或者 注册

所属专业
上级专业
同级专业
mass_lynnxy
进士 学者 机友 笔友
文章
650
回复
1176
学术分
40
2005/11/29注册,2个月3天前活动
暂无简介
主体类型:个人
所属领域:无
认证方式:手机号
IP归属地:未同步
插入公式
评论控制
加载中...
文号:{{pid}}
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

加载中...
详情
详情
推送到专栏从专栏移除
设为匿名取消匿名
查看作者
回复
只看作者
加入收藏取消收藏
收藏
取消收藏
折叠回复
置顶取消置顶
评学术分
鼓励
设为精选取消精选
管理提醒
编辑
通过审核
评论控制
退修或删除
历史版本
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}