附上仿真文件
另外说,这是一篇创纪录的帖子,它创的纪录是:我拖的时间最长的帖子
本文仿真了两个线圈,一个是圆铜线绕制的,一个是铜带绕制的。本文主要研究它们在高频下电阻损耗和磁场分布的变化情况。主要结论有:
1. 多层线圈中的邻近效应,会导致圆铜线圈在线径小于2倍趋肤深度时,电阻损耗就已经开始显著增大。
2. 使用很薄的铜带绕制线圈,也不能避免趋肤效应。因为电流不止会沿厚度方向趋肤,还会朝铜带两边趋肤。
本文不介绍趋肤效应和邻近效应的定义,因为网上有很多优秀的资料可供查阅。下面依次介绍两个线圈的仿真模型和结果:
圆铜线圈的仿真模型如下图。
图1 圆铜线圈模型
该模型是线圈的截面,实际的线圈由图中的众多红色圆形绕Z轴旋转形成。这个线圈内径10mm(直径),外径20mm,长10mm。导线材质为铜,电导率取5.8x107 S/m。线径0.9mm,相邻的两根线的中心距是1mm,填充率63.6%。线圈有5层,每层有10匝,一共50匝。仿真中,线圈电流是峰值400A的正弦波,频率从100 Hz 扫描到10 kHz。仿真使用的软件是Ansys Electronics Desktop 2021 R2 中的Maxwell。
图2 圆铜线圈电流密度 vs 频率
图3 圆铜线圈电流密度,频率10 kHz
上两张图显示,随着频率的升高,线圈中的电流越来越不均匀。这会导致线圈损耗增加,等效电阻增大,以及电感略微减小,如下图。
图4 圆铜线圈电阻和电感 vs 频率
上图中,红线为线圈电阻,标尺在左侧,蓝线为线圈电感,标尺在右侧。仿真结果显示,圆铜线圈的等效电阻,在10 kHz时,升高到了126 mΩ,是其低频时的1.9倍。但是,铜在10 kHz时的趋肤深度,是0.65 mm,此线圈使用的0.9 mm线径,明显小于2 倍趋肤深度,而其电阻依然显著增加。因此,使用“2倍趋肤深度”来判断多层线圈趋肤效应是否严重,是不合适的。此时,邻近效应的影响十分显著,如果要判断高频下电阻损耗是否仍可接受,应当查阅相关图表,或者进行仿真。
图5 圆铜线圈磁场和磁力线 vs 相位,频率10 kHz
图6 圆铜线圈磁场和磁力线 vs 频率
高频下,圆铜线圈的磁场几乎没有变化,如上图所示。
铜带线圈的仿真模型如下图
图7 铜带线圈模型
铜带线圈的外轮廓与圆铜线圈一致(内径,外径,长度)。铜带宽度与线圈长度相等,为10mm。铜带厚0.2mm,间距0.05mm,填充率80%,材料为铜。铜带共有20层。仿真时使用的电流为峰值1 kA 的正弦波,其安匝数与圆铜线圈相同。频率也从100 Hz 扫描到10 kHz。
图8 铜带线圈电流密度 vs 频率
图9 铜带线圈电流密度,频率10 kHz
上两张图显示,随着频率的升高,铜带上的电流会向两边集中。这个电流集中发生得比圆铜线圈早很多,因此铜带线圈的电阻会在更低频的时候就开始上升,如下图。下图中红线是铜带线圈的电阻,绿色虚线是圆铜线圈的电阻,两个电阻均归一化到各自的最小值。可以看到在1kHz时,铜带线圈的电阻就已经上升了7.7 %,而圆铜线圈几乎没有变化。
图10 归一化电阻
同时,铜带线圈中,电流在空间中的位置变化很大,因此这会显著的影响线圈磁场分布,导致线圈电感下降,如下图。下图中红线是铜带线圈的电感,绿色虚线是圆铜线圈的电感,两个电感均归一化到各自的最大值。
图11 归一化电感
另外,这里给出铜带线圈的未归一化的电感和电阻,供参考:
图12 铜带线圈的电感(蓝线)和电阻(红线)
值得注意的是,尽管铜带线圈的趋肤发生的更早,但是,得益于其较高的填充率,其电阻损耗其实始终比圆铜线圈小,如下图。
图13 损耗功率,红线:铜带线圈,绿线:圆铜线圈
铜带线圈中的电流位置变化,还会导致其磁感应强度下降,如下图。可以看到,在高频时,线圈内的磁力线明显变得更“直”,因为高频时导体会“排斥”磁力线,使垂直于铜带的磁场分量被削弱。
图14 铜带线圈的磁场和磁力线
铜带线圈在部分插入铁芯时,电流分布会发生很明显的变化,如下图。图中,在线圈中间插入了一根8x20 mm的钢棒,钢棒的一端位于线圈的正中心。仿真时考虑了钢棒的非线性磁化,不考虑磁滞,不考虑钢棒上的感应电流。
图15 铜带线圈部分插入铁芯时的电流密度
这个电流分布变化,会进一步提高电阻损耗,如下图。图中,实线是部分插入铁芯时的电阻损耗,虚线是空心时的电阻损耗。红线代表铜带线圈,可以看到,插入铁芯后,铜带线圈的损耗明显增高。作为对比,绿线代表圆铜线圈,有铁芯和无铁芯的两条曲线重合在了一起,表示铁芯对其电阻损耗几乎没有影响。
图16 部分插入铁芯时的电阻损耗
另外附上部分插入铁芯时的磁场和磁力线,供参考。
图17 铜带线圈部分插入铁芯时的磁场和磁力线
综上,多层线圈中,邻近效应很显著,不再能用“2倍趋肤深度”来判断线径是否合适。空心铜带线圈,尽管铜带厚度远小于趋肤深度,但电流不光会沿厚度方向趋肤,还会沿宽度方向趋肤,因此其受趋肤效应的影响也很大。特别是,铜带线圈的电流分布,在部分插入铁芯时会显著变化,导致电阻损耗进一步提高。对于某些应用,例如电动机、电磁炮和带较大气隙的变压器,这个电流分布变化可能需要特别考虑。
有一定意义。就和现在电机使用扁线一个道理,考虑到电磁加速器的应用,频率不可能很高,涡流损耗和磁滞损耗几乎可以忽略不计,优势很大。
不过我觉得可以考虑用铝带替换铜带。毕竟按照电流密度/质量来算,铝只有铜三分之一的密度,但是电导率至低了50%。因此我认为铝带更适合轻量化电磁产品,只要注意匝间绝缘即可。
线圈仿真似乎没有设置每一根导线中的电流相同这一条件。看你那个电流分布云图,外层中部电流密度小一个数量级,这是线圈尺度上的这种效应导致的。实践中一根导线绕到底,截面上每根导线电流一样大。加上这个约束可能你的结论会推翻的。
引用iamapighhh发表于3楼的内容线圈仿真似乎没有设置每一根导线中的电流相同这一条件。看你那个电流分布云图,外层中部电流密度小一个数量...
可以单独设置每根导线的电流,设置成一样的就行了。参考1楼的仿真文件
200字以内,仅用于支线交流,主线讨论请采用回复功能。