最近看到了一篇论文
Efficiency and Scaling of Constant Inductance Gradient DC Electromagnetic Launchers.pdf
304.94KB
PDF
151次下载
预览
挺经典的一篇,截至目前,被引用次数63,在轨道炮的圈子里相当高了。
里面就对轨道炮的效率进行了计算,和顶楼不同,他用出速,电阻和电感梯度表示的效率。不过和顶楼相同的是,他也假设了回路电阻不变,对于需要考虑电阻变化的情况,他是这样一笔带过的:“An average system resistance can be used in these cases.”感觉也不太严谨,不过解析方法也就能做到这里了……至少用来算效率极限还是可以的。
我也来把顶楼的式子改一下,来凑凑热闹吧 ( ’◡’)
从顶楼式(8)开始,沿另一条路推下去。
由
$$ E_k = \frac{1}{2}mv^2 $$
可以得到
$$ m = \frac{2E_k}{v^2} $$
设初速v0=0。将其代入顶楼式(7),同时把弹丸质量用上面的式子进行替换。可以得到
$$ \Delta E_k = E_k = \frac{v^2 {E_R}^2 L'^2}{16E_k R^2} $$
其中,L‘ = dL/dx,即电感梯度,表示还是这么写比较方便……
等式两边同时乘以Ek,然后同时开方,得到
$$ E_k = \frac{v {E_R} L'}{4 R} $$
然后就是求效率,和顶楼不同,这里我们不再认为Ek可忽略,但是我们依旧忽略剩余磁能,以及摩擦力的影响。因此,可以得到效率
$$\eta = \frac{E_k}{E_k+E_R} = \frac{1}{1+\frac{E_R}{E_k}} $$
即
$$\eta = \frac{1}{1+\frac{4R}{vL'}} $$式中,R为回路电阻,v为弹丸出速,L‘为轨道电感梯度。
适用条件为,回路电阻保持恒定,不考虑除回路电阻损耗以外的其他损耗。
和上面那篇论文里得到的结论相同。
那篇论文里,还定义
$$ \sigma = \frac{4R}{L'} $$
\(\sigma\)称为特征速度,即达到50%效率所需要的最小速度。一个挺不错的定义 : )