谁帮我讲解一下这四个方程的意思啊?讲详细点最好了。
zenglang102015/01/22电子技术 IP:广西
谁帮我讲解一下这四个方程的意思啊?讲详细点最好了,谢谢好心人了。。 QQ图片20150122142427.jpg
来自:电子信息 / 电子技术
10
已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也
hchc0834
9年11个月前 IP:四川
742001
这字...无敌了..
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
金星凌日
9年11个月前 IP:陕西
742002
首先你第一个方程写错了,Nabla算子和E之间有个乘号。
这个方程一般写成这样:

maxwell.png

(1)电场的旋度等于磁场随时间变化率的负值;
(2)电场的散度等于电荷密度比真空介电常数;
(3)磁场的旋度等于真空磁导率乘以电流密度矢量加上真空磁导率乘以真空介电常数再乘以电场随时间的变化率;
(4)磁场的散度等于0。这说明磁场是无源场。
真空磁导率乘以真空介电常数就等于光速平方的倒数。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
zenglang10作者
9年11个月前 IP:广西
742025
乘号不用写也可以啊,(1)表示变化的磁场会产生一个围绕它的电场
(2)是位移电流,传导电流和变化的电场
你说的太复杂了吧,俺看不懂哦,也不能理解。。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
潜伏
9年11个月前 IP:浙江
742032
看不懂啊
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
勤奋的小黄瓜
9年11个月前 IP:山西
742033
点乘和叉乘含义是不一样的。
麦克斯韦方程组找本书看看吧。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
金星凌日
9年11个月前 IP:陕西
742035
引用 zenglang10:
乘号不用写也可以啊,(1)表示变化的磁场会产生一个围绕它的电场
(2)是位移电流,传导电流和变化的电场
你说的太复杂了吧,俺看不懂哦,也不能理解。。
这个乘号代表矢量叉乘,不能省略。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
量子隧道
9年11个月前 IP:北京
742057
这是矢量表示法的微分形式,需要学完高等数学高难版才能理解。撸主可以找麦克斯韦方程组的积分形式来尝试理解下。一般来说以高中学生的认知力是可以理解积分形式的。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
zenglang10作者
9年11个月前 IP:广西
742080
老麦 凭空推导出了电磁波的存在,直到20多年后,赫兹才第一次用实验证实了电磁波的存在。太不可思议了,太了不起了,太伟大了……他入土之日,世界上还没有人跟得上他的思想!虽说他只活了49岁。跟特斯拉一样是个电磁精灵。
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论
noisystroller
9年11个月前 修改于 9年11个月前 IP:北京
743202
挺详细吧~~错漏之处见谅~~~
Image_017.png
简单总结:
电荷产生电场(高斯),不存在磁单极子(高斯磁)
电流产生磁场,变化的电场也可以产生磁场(麦克斯韦-安培),变化的磁场也可以产生电场(法拉第)

—————————————————————————————————————————————————————————
电磁场是矢量场,可以粗略认为空间中每个点都对应一个矢量,指出了这点的电场/磁场的方向与大小。
就像这样:
Image_018.png
电场散度的意义粗糙的理解是,在一个点“附近”射出电场线数目与射入电场线数目的差。
就是一个矢量在一个闭区域内,其单位体积内通量的大小,通量即是通过之量的意思。

理解散度,先要理解通量(是一种闭合曲面积分)

矢量的通量即是这个矢量对X,Y,Z的偏导的和(标量),通量通俗的讲正可以理解为一个矢量在一个曲面的累积效果(穿过的“电场线数目”),就像积分的本质就是求和一样。
可以在这个点附近做一球,将所有“净”射出球内的矢量在球面法线的投影叠加(即“通量”),令球的半径不断缩小,这个叠加值就是这一点电场的散度。
运算的对象是向量,运算出来的结果会是标量,就像穿过的“电场线数目”是一个数。
(闭合曲面上每一点都对应有一个矢量,就是这个点上的“电场强度”,如果这个电场强度的方向指向是垂直于这个面的,它在这一点曲面法线方向的投影就大,它对通量的贡献就大)
仅作理解,如果现在我们考虑任何一个点(或者说这个点的周围极小的一块区域),在这个点上,向量场的发散程度,如果是正的,代表这些向量场是往外散出的.如果是负的,代表这些向量场是往内集中的.

散度的一个 定义:
Image_019.png

其中的曲面积分就可理解为通量。散度就是“ 通量” 在闭合曲面(可以理解为球面)体积不断不断缩小,无限趋近一个点时的极限

高斯公式:
矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分。

可以理解为:

散度是一颗一颗的,你想知道封闭房间的天花板墙壁和地板上总共照了多少光(光通量,闭合曲面积分),只需要数一下房间里亮了多少颗灯泡(可以理解为散度的体积分,灯泡,不就是一个光最发散的地方吗,积分就是求和,所以要把所有灯泡都加起来就行。

现在来理解 高斯磁定律高斯定律(参看表格)

高斯磁定律:
微分形式:磁感应强度的散度为0,即为这个磁场是无源可寻的,这也就说明无法寻找到磁单极。在任何地方都找不到“发散源”
对微分形式两边在一闭合S面上积分,就得到积分形式。这样我们在磁场中任做一闭合曲面,对磁场做曲面积分,得到的结果一定是 0,应为穿进来的磁场线一定会穿出去,一一抵消。

高斯定律:
揭示了电场是一个有源场,什么是有源场呢??该场的散度是由实体物质(正负电子)所“发出”,是有源可寻的。
积分形式:在电场中任做一闭合曲面,要求出电通量,只用将包围其中的电荷(源)叠加即可
微分形式:通量的极限是散度,所以两边取极限,不难想象,左边应该是电场的散度,右边则是一个无限小区域内的电荷数目,其实就是电荷的“密度”


接下来是旋度
Image_020.png
(等式两边都是标量,仅是旋度的大小,因为方向可简单由右手螺旋定则得到)

理解旋度,先要理解环量(是一种回路积分)

矢量场的环量,实际上就是这个矢量场在一个场中的“闭合曲线(C)”上沿曲线切线方向的积累(闭合曲线上每一点都对应有一个矢量,就是这个点上的“电场强度”,如果这个电场强度的方向指向是顺着曲线的,它在这一点曲线切线方向的投影就大,它对环量的贡献就大)。
这就是环量环量越大,说明这个矢量在闭合曲线上的积累越多。

投影的叠加,运算结果是一个矢量,为什么呢?因为这个”积累“有方向。但是这个方向只与环绕方向(沿曲线积分的方向)有关,因此只有两种情况,顺时针、逆时针。所以就自然而然的规定该方向与曲线的环绕方向满足右手螺旋定则,即此曲线围绕面的法线方向——要么垂直向上要么垂直向下
现在让这个”环“的面积 A 不断缩小,可以理解为一个半径不断减小的圆,最终会小到几乎看起来是一个点。这个环量的极限就是旋度。

很容易明白,对于静电场而言,其电场强度的旋度为0,因为在静电场中任找一个闭合回路,总电势(在回路上的每一个线微元δ上ΔU=E‘δ,E‘即电场沿δ切线的投影,求和即可。微元的求和,也就是积分)一定为零,所以这个环量(电势)的极限——旋度,也是0。而对于感应电场,磁通量的变化率决定了一个回路中感应电压的大小,对应到电场就是所谓涡旋电场,这就是法拉第电磁感应定律,对回路取极限容易得到其微分形式。
而对于磁场,在稳恒电流下,由毕奥萨伐定律可以得到一小截通电导线(电流元)周围的磁场分布,进而得到长直导线周围的磁场分布,由此可以得到安培环路定理。即:磁场的环量正比于穿过此环路的电流和。而环量取极限得到旋度,电流对截面大小取极限就是电流密度矢量


进一步理解,再考虑这里的”电流“,即电流密度矢量在电荷通过截面上的(其实不一定有电荷通过,可以先这么理解)曲面积分。对于稳恒电流,电流大小就是单位时间内通过导线截面的电荷总量;微观上说,就是电流密度矢量在导线截面的通量。由于电荷不能凭空产生,任取一固定的闭合曲面,进入和出去的电荷量一定相同,否则导线的某个地方的电荷会越来越多或越来越少,都是不可能的;这就是说,对于稳恒电流,电流密度矢量在闭合曲面的通量为0.而对于非稳恒情况,例如电容器放电,对只包围其中一个极板的闭合曲面,电流密度矢量的通量可以不是0,宏观上看就是只有电流流出没有电流流入。所以麦克斯韦引入所谓位移电流来解释这一部分的非稳恒电流,这样引入位移电流的总电流密度矢量的通量依旧是0.至于位移电流的组成,可分为电场强度的随时间变化率(真空中也存在)与介质的极化强度随时间变化率。这样,麦克斯韦-安培定律右边就有两项(其中的总电流I包括稳恒部分(电荷移动)以及位移电流中的介质的极化强度随时间变化率的部分)

参考文献:
XXXXXXXXXXXXXXXXXXXX/question/25121612
XXXXXXXXXXXXXXXXXXXX/question/21912411
XXXXXXXXXXXXXXXXXXXXXXX/s/blog_XXXXXXXXXXXXXXXXXXXml
引用
评论
加载评论中,请稍候...
200字以内,仅用于支线交流,主线讨论请采用回复功能。
折叠评论

想参与大家的讨论?现在就 登录 或者 注册

所属专业
上级专业
同级专业
zenglang10
笔友
文章
8
回复
55
学术分
0
2014/10/25注册,6年11个月前活动
暂无简介
主体类型:个人
所属领域:无
认证方式:邮箱
IP归属地:广西
文件下载
加载中...
{{errorInfo}}
{{downloadWarning}}
你在 {{downloadTime}} 下载过当前文件。
文件名称:{{resource.defaultFile.name}}
下载次数:{{resource.hits}}
上传用户:{{uploader.username}}
所需积分:{{costScores}},{{holdScores}}下载当前附件免费{{description}}
积分不足,去充值
文件已丢失

当前账号的附件下载数量限制如下:
时段 个数
{{f.startingTime}}点 - {{f.endTime}}点 {{f.fileCount}}
视频暂不能访问,请登录试试
仅供内部学术交流或培训使用,请先保存到本地。本内容不代表科创观点,未经原作者同意,请勿转载。
音频暂不能访问,请登录试试
支持的图片格式:jpg, jpeg, png
插入公式
评论控制
加载中...
文号:{{pid}}
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

加载中...
详情
详情
推送到专栏从专栏移除
设为匿名取消匿名
查看作者
回复
只看作者
加入收藏取消收藏
收藏
取消收藏
折叠回复
置顶取消置顶
评学术分
鼓励
设为精选取消精选
管理提醒
编辑
通过审核
评论控制
退修或删除
历史版本
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}