研究了个寂寞
用没人用的办法,解决没被发现的问题
文号930518
14104
14
收藏(6)

[连载] 多层线圈的高频特性

这篇帖子给出一些多层线圈的“高频特性”的仿真结果。“高频”是指最高上百MHz。仿真中主要关注的是线圈“电感”和“等效串联电阻”随频率的变化,特别是第一个自谐振点的频率。因为仿真的速度很慢,所以这篇帖子以连载的形式发出。


一.  2024年3月26日的结果:

仿真模型如下图。这是一个矩形截面的多层空芯圆柱形线圈。线圈线径是0.9mm,材质为铜,仿真中将“圆形”的导线近似成“六/八边形”。线间距是0.1mm。每层有10匝,一共有6层,下图中各层用不同颜色显示。每层都是螺旋形,层间互联是通过加一个小方块实现的。线圈内径是10mm,外径22mm,长10mm。仿真中的馈源是一个集总端口,阻抗50Ohm,它通过一小截线和线圈的两端相连。

  1 结构.gif

1p1 静态.png

一般来说,这种线圈会用Ansys Maxwell这种准静磁学软件进行仿真。但是这篇帖子里,仿真用Ansys HFSS进行。这是因为“准静磁学”中,“位移电流”被认为是零,即不存在电容。而我们想要观察的自谐振特性,显然和电容高度相关。因此不能用准静磁仿真,必须用电磁仿真。


线圈的网格如下图。因为线圈的结构是“曲面+细线”,必须划分非常多的网格,所以仿真速度很慢,内存占用也比较多。这层楼里的出现的三个仿真结果,在i7-9750H的笔记本上,一共需要仿真大约10个小时,最多占用内存30 GB左右。

  1p2 网格.png

这层楼里一共有三个仿真结果:

结果1中使用较大的空气盒子,使用八边形导线

结果2中使用较小的空气盒子,使用六边形导线

结果3中使用较小的空气盒子,使用六边形导线,且勾选了solve inside。


结果2和3的仿真的磁场强度如下。一共有四张图,仿真频率均为1MHz,这些图使用了对数标尺。HFSS中,金属材料默认是不solve inside的,即假设电流只在金属表面流动,金属内部磁场为零。前两张图(结果2)就是在这种条件下的结果。这种假设在HFSS的常规应用条件下,比如几GHz的频率,是正确的。但是这里我们的频率最低会仿到1kHz,此时这个假设就很错误了。因为这种低频下,磁场可以充分渗透到导线内部。后两张图的仿真中(结果3)纠正了这个错误。

  3 没有solve Inside.png

3p1 近景.png

上两张图是没有勾选solve inside时(结果2)的磁场强度,第二张是线圈部分的细节图

 

  4 有solve Inside.png

4p1 近景.png

上两张图是勾选了solve inside时(结果3)的磁场强度


下两张图是结果3中,1MHz时的磁场动图,以及16MHz时(自谐振频率附近)的电场动图。我还看了其他频率时的电场和磁场图,我没有看出自谐振点附近有什么特别的现象,场分布基本没有变化。

  4p2 H动图 1MHz.gif

4p3 E动图 16MHz.gif

 

仿真的电感如下图。横轴是频率,纵轴是电感量(单位是uH)。绿色虚线是结果1,红色线是结果2,蓝色线是结果3。可以看出,结果1和结果2的差别不大,说明使用小空气盒子和六边形线问题不大。结果2和3的自谐振点在16.7MHz左右,比结果1的频率略高一点。这是比较合理的,毕竟六边形之间的电容,显然会比八边形的更小。低频时,结果3和结果1,2的差别很大,主要体现在低频时结果3的电感明显更小。

  5 inductance.png

作为对比,使用常见的hacoilgun模拟器计算这个线圈的电感和电阻,结果如下图。结果3的电感,在低频下和hacoilgun的极为接近。

  2 hacoilgun 的结果.png

仿真的电阻如下图。纵轴单位是欧姆。其中结果3在1kHz时的电阻是99.8mOhm,而且电阻率的上升发生在更高频率处,看起来都更加合理。

  6 resistance.png

结果3看起来更正确一些,不过代价也很大,主要体现在仿真速度上。结果2只需要不到2个小时,而结果3需要七个多小时。


仿真文件如下:

attachment icon coil hf 240326.aedt 1.58MB AEDT 11次下载


[修改于 9 个月前 - 2024/03/26 16:58:36]

14
已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也
三水合番 作者
8个月28天前 IP:四川
930570

二. 2024年3月28日的结果

在3月26日的仿真中,只考虑了金属部分,没有考虑到介质的影响。

这次更新了模型,给线圈加上了介质。下图中透明色的部分是介质,它是一个空芯圆柱形。介电常数为4。

Snipaste_2024-03-28_11-21-15.png

仿真的电感量和电阻如下图:

Snipaste_2024-03-28_11-14-00.png

Snipaste_2024-03-28_11-14-08.png

其中,虚线是3月26日的结果3的曲线,实线是这次仿真的曲线。自谐振频率降低到了8.2MHz,大约是没有介质时的一半。这比较合理,因为介电常数从1增加到4,对应着电容量增加到原来的四倍,谐振频率也就应该变为原来的一半。

另外注意到,从电阻-频率曲线上看,28.1MHz处,有一个比较弱的谐振点。这应该是3倍频处的谐振。这个频率下的电场和磁场比较有特点,如下图。可以看到电场在第三和第四层之间异常的弱,而磁场似乎出现了“定向性”,下方比上方略强。

1.gif

2.gif

仿真模型如下:

attachment icon coil hf 240328.aedt 630.42KB AEDT 1次下载


三水合番作者
8个月27天前 修改于 8个月27天前 IP:四川
930622

三.  2024年3月29日的结果

在3月28日的模型的基础上,在线圈中间添加一根不锈钢管,如下图。不锈钢管内径8.5mm,外径9mm,长50mm,电导率1.1e6 S/m。

Snipaste_2024-03-28_22-22-30.png

仿真的电感和电阻如下图。虚线是3月28日的结果,实线是这次的结果。这次的高频电感量有所下降,自谐振频率从8.2MHz提升到了11.2MHz。高频的电阻还有所增加。

Snipaste_2024-03-28_22-10-43.png

Snipaste_2024-03-28_22-11-45.png

仿真的电场与磁场图如下,频率是1MHz。电场图中,可以看到不锈钢管上出现了一些感应电场。磁场图中,可以看到不锈钢管对磁场起到了屏蔽的效果。但是其内部的磁场只是减弱了,不是完全没有了。

Snipaste_2024-03-28_22-18-32.png

Snipaste_2024-03-28_22-16-00.png

下图是线圈轴线上的磁场强度。虚线是3月28日的结果,实线是这次添加不锈钢管之后的效果。可以看到,磁场强度从371 A/m下降到了142 A/m。

Snipaste_2024-03-28_22-23-38.png

仿真模型如下:

attachment icon coil hf 240329.aedt 777.82KB AEDT 3次下载


三水合番作者
8个月24天前 IP:四川
930716

四. 2024年4月1日结果

之前的仿真速度太慢,内存占用太大,所以这次仿真在3月29日的基础上,修改了一些仿真设置,来提高速度,降低内存占用。具体修改了三个地方,如下图。将网格剖分的精细程度下调了一格,从“偏右两格”调整为“偏右一格”。将基函数从first order调整为mixed order。将求解器从direct solver调整为iterative solver,并且将relative residual从默认的1e-6调整为1e-4。

修改仿真设置.png

进行如上调整之后,仿真耗时从8小时53分,下降到了4小时46分。内存占用从43GB下降到29GB。下面第一张图是3月29日的结果,第二张图是这次的结果。

Snipaste_2024-04-01_10-54-53.png

Snipaste_2024-04-01_10-54-26.png

仿真的电感和电阻曲线如下图,虚线是3月29日的结果,实线是这次的结果。两次仿真的结果有细微差别,但是可以接受。

Snipaste_2024-04-01_10-09-51.png

Snipaste_2024-04-01_10-10-02.png

三水合番作者
8个月20天前 IP:四川
930862
引用三水合番发表于3楼的内容
四. 2024年4月1日结果之前的仿真速度太慢,内存占用太大,所以这次仿真在3月29日的基础上,修改...

上述结果都是在一台i7-9750H + 64GB内存的笔记本上运行的。

另外,我还在一台性能更强的台式机上运行了完全一致的仿真。台式机的配置是i9-10900K + 128GB内存。然而出乎意料的是,台式机上的仿真速度并没有快出许多。笔记本上耗时4小时46分的仿真,台式机上也需要3小时51分,仅快了24%。而根据XXXXXXXXXXXXXXXX 上的跑分结果,i9-10900K应该是 i7-9750H 的两倍才对。

Snipaste_2024-04-05_10-34-42.png

i7-9750H i9-10900K cpubenchmark.png

三水合番作者
8个月20天前 修改于 8个月20天前 IP:四川
930866

五. 2024年4月5日的结果

今天首次出现了无法理解的现象。

这次仿真在4月1日的基础上,修改模型,在线圈内添加一个金属圆柱,如下图。圆柱的直径为8mm,长16mm。其电导率为 6315730 S/m,与常见钢材类似。其相对磁导率被设置为 1。

Snipaste_2024-04-01_11-19-07.png

仿真的1MHz处的磁场随相位的变化如下图

magH phase.gif

10kHz时的磁场随相位的变化如下

magH phase 10kHz.gif

仿真的不同频率的磁场如下图(相位保持在90度)

magH freq.gif

仿真的电感和电阻如下图

image.png image.png

在低频下(几百kHz以下)的表现是可以理解的。此时线圈的电感量变低,这是因为添加金属圆柱之后,线圈内部的导体变多了。电阻(损耗)则是在几十kHz以下时变大,在几十kHz以上时变小,这是因为新加入的金属的“导电性”比原本的不锈钢更强。

然而在几百kHz以上的频率,出现了无法理解的现象。此时加入金属圆柱之后的电感量,反而比之前的略微大了一点。同时在2MHz以上,加入金属圆柱之后的电阻又重新超过了之前的值。自谐振点也略微向低频偏移了一些。

这种“导体越多电感越大”的现象,我还无法理解为何会发生。

三水合番作者
8个月18天前 IP:四川
930970

六. 2024年4月7日的结果

在4月5日的结果的基础上,调整了“金属圆柱”的相对磁导率,将其改为 2.0 和 10.0,分别进行仿真。

仿真得到的电感和电阻如下图。其中,蓝色虚线是不添加金属圆柱时的结果(4月1日的结果)。绿色是虚线是添加了金属圆柱,且其相对磁导率为 1.0 时的结果(4月5日)。红色实线和橙色实线,分别是相对磁导率为 2.0 和 10.0 时的结果。在不同的相对磁导率下,在1MHz以上的频率,均出现了“导体越多电感越大”的现象。

image.png


image.png


三水合番作者
8个月17天前 修改于 6个月3天前 IP:四川
931038

七. 2024年4月8日的结果

在4月7日中相对磁导率 ur = 2.0 的结果的基础上,修改金属圆柱的位置,令其沿z轴方向平移。对平移-18mm到0mm的情况进行仿真,模型如下图

1.gif

仅对 100kHz 到 1MHz 范围内的电感进行仿真,仿真结果如下。在相对高频处,比如1MHz,依然有比较明显的“导体越多电感越大”的现象。

Snipaste_2024-04-08_21-56-28.png

2024年6月21日更新,补充电阻结果:

image.png

coulson21
7个月12天前 IP:安徽
931979
引用三水合番发表于5楼的内容
五. 2024年4月5日的结果今天首次出现了无法理解的现象。这次仿真在4月1日的基础上,修改模型,在...

有没有可能不是提高了电感,而是降低了电容,使得阻抗向感性移动。

2SC1970
7个月2天前 IP:四川
932289

之前在10mm骨架上绕了一个约160匝的多层线圈,脱模之后测电感136uH;将一根6*35mm的Q235定位销塞入线圈内部,测电感141uH。


三水合番作者
6个月5天前 IP:四川
933169

2024年6月19日

改用maxwell仿真同样的模型。maxwell是一个“准静磁”仿真软件,它在进行磁场仿真时认为电容为零。

仿真所用模型与“2024年4月7日”的模型在机械结构上基本一致,“金属圆柱”的相对磁导率设置为 2。

模型的主要区别是馈电方式不同,hfss里用的是阻抗 50ohm 的 lump port。maxwell里用的是 coilTerminal,电流恒定为1A。这个对于仿真电阻电感没有影响,但是会对磁场图有影响。hfss里端口阻抗恒定,线圈阻抗随频率升高而变大,所以频率越高,磁场越弱。maxwell里端口电流恒定,所以磁场幅度随频率也基本不变。

仿真的电感和电阻如下,实线是这次仿真的结果,虚线是“2024年4月7日”的结果。可以看到使用maxwell仿真时没有出现自谐振特性,低频时的结果和hfss吻合良好,频率越高差别越大。

image.png

image.png


10kHz时磁场动图如下:

magH 10kHz.gif

100kHz时的磁场动图如下:

magH 100kHz.gif

1MHz时的磁场动图如下:

magH 1MHz.gif


仿真的速度和内存占用如下:

image.png

三水合番作者
6个月5天前 IP:四川
933172
引用coulson21发表于8楼的内容
有没有可能不是提高了电感,而是降低了电容,使得阻抗向感性移动。

这不太合理。要影响电容,得能影响电场,但是金属管已经屏蔽了它内部的电场,金属柱是影响不到电场的,也就影响不到电容。

三水合番作者
6个月3天前 IP:四川
933215

2024年6月21日

在“2024年6月19日”的基础上去掉金属柱。红色实线是这次的结果,绿色虚线是使用hfss仿真同样模型时的结果,蓝色虚线是2024年6月19日的结果(磁导率为2的金属柱)。

image.png

image.png

三水合番作者
6个月3天前 IP:四川
933216

2024年6月21日 - 2

尝试仿真线径更细的线圈,如下图。模型中,线径为0.4mm,线与线之间有0.1mm的缝隙,即相邻导线中心距0.5mm。每层20匝,一共12层。该线圈外轮廓与前文所述的线圈一致,但是每层匝数和层数都变成了两倍。

image.png

不幸的是,这个模型无法仿真:即使在128GB内存的电脑上,也会报 out of memory 的错误 sticker


仿真文件如下:

attachment icon 4 finnerCoil.aedt 1.53MB AEDT 1次下载


粥粥
6个月3天前 IP:湖北
933219
引用三水合番发表于13楼的内容
2024年6月21日 - 2尝试仿真线径更细的线圈,如下图。模型中,线径为0.4mm,线与线之间有0...

学校的计算中心能申请用吗?

主体信息
主体类型:个人
所属领域:无
认证方式:手机号
IP归属地:未同步
 内容统计
2024年11月
1 篇
2024年10月
1 篇
2024年06月
2 篇
2024年03月
2 篇
2024年02月
1 篇
2023年
8 篇
2022年
8 篇
2021年
2 篇
2020年
2 篇
2019年
6 篇
ID: {{user.uid}}
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

加载中...
回复
设为精选取消精选
评学术分
鼓励
编辑
查看历史
通过审核
移动文章
加入收藏取消收藏
退修或删除
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}
回复
加入收藏取消收藏