终于讲到卷积神经网络了,RBF神经网络先暂时先不讲,因为用途不是很广(现在主要是机械控制),而且网上讲的不错:这里
卷积是一个数学操作,用两个函数得到第三个函数,用公式可以表示为: $$h(x)=\int_{-\infty}^{+\infty}f(\tau )*g(x-\tau )d\tau $$ 但说实话,这个公式对于我们理解卷积神经网络没有太大帮助,因为我们这里用的是广义上的卷积,我们最好用一张动态图像来表示(未找到来源,侵删) $$x_j^{\ell}=f(\sum_{i\in M_j}x_{i}^{\ell -1}*k_{ij}^{\ell}+b_j^{\ell})$$ 其中,\(M_j\)是一个输入集合,代表\(x_j^{\ell}\)的输入来源,通常包含上一层中的若干个特征图像,\(k_{ij}\)是权值,\(b_j\)是偏置。 在[2]中的LeNet-5 (结构见图6)中,输入集合是如下表示的:
当然,卷积神经网络还有二次抽样层(池化层): 图中所示的是一种叫做最大池化的一种池化技术。 同时,卷积神经网络还有一种全连接层,这种层的结构与反向传播神经网络是一样的,它的作用是对提取出来的特征进行分类。 卷积神经网络通常有两部分,一部分是卷积层和池化层交替的特征提取部分,还有一部分是全连接层组成的分类部分。 由于卷积神经网络的卷积及池化操作符合人脑的图像处理中枢的部分特征,再加上卷积操作本身减少了不必要的权值并且取消了原本的神经网络的数据区域独立,使得图像的特征得以较好地提取,故其成为现在图像识别领域重要模型。
参考文献:
[1]:
[2]:
时段 | 个数 |
---|---|
{{f.startingTime}}点 - {{f.endTime}}点 | {{f.fileCount}} |