新版本公告
~~空空如也
加载中
加载中
表情图片
评为精选
鼓励
加载中...
分享
加载中...
文件下载
加载中...

卷积神经网络(CNN)

blob.png

终于讲到卷积神经网络了,RBF神经网络先暂时先不讲,因为用途不是很广(现在主要是机械控制),而且网上讲的不错:这里

卷积是一个数学操作,用两个函数得到第三个函数,用公式可以表示为: h(x)=+f(τ)g(xτ)dτ 但说实话,这个公式对于我们理解卷积神经网络没有太大帮助,因为我们这里用的是广义上的卷积,我们最好用一张动态图像来表示(未找到来源,侵删) 6.gif xj=f(iMjxi1kij+bj) 其中,Mj是一个输入集合,代表xj的输入来源,通常包含上一层中的若干个特征图像,kij是权值,bj是偏置。 在[2]中的LeNet-5 (结构见图6)中,输入集合是如下表示的: blob.png

当然,卷积神经网络还有二次抽样层(池化层): blob.png 图中所示的是一种叫做最大池化的一种池化技术。 同时,卷积神经网络还有一种全连接层,这种层的结构与反向传播神经网络是一样的,它的作用是对提取出来的特征进行分类。 卷积神经网络通常有两部分,一部分是卷积层和池化层交替的特征提取部分,还有一部分是全连接层组成的分类部分。 由于卷积神经网络的卷积及池化操作符合人脑的图像处理中枢的部分特征,再加上卷积操作本身减少了不必要的权值并且取消了原本的神经网络的数据区域独立,使得图像的特征得以较好地提取,故其成为现在图像识别领域重要模型。

参考文献: [1]:
attachment icon Notes on Convolutional Neural Networks.pdf 140.46KB PDF 66次下载 预览 [2]:
attachment icon GradientBased Learning Applied to Document.pdf 982.47KB PDF 114次下载 预览

游客没有发表内容的权限。想参与大家的讨论?现在就 登录注册
文号 / 823947

百炼成钢
名片发私信
学术分 1
总主题 13 帖总回复 86 楼拥有证书:进士 学者 机友 笔友
注册于 2015-02-04 16:01最后登录 2020-07-28 23:48
主体类型:个人
所属领域:无
认证方式:手机号
IP归属地:江西

个人简介

暂未填写
文件下载
加载中...
视频暂不能访问,请登录试试
仅供内部学术交流或培训使用,请先保存到本地。本内容不代表科创观点,未经原作者同意,请勿转载。
音频暂不能访问,请登录试试
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

插入资源
全部
图片
视频
音频
附件
全部
未使用
已使用
正在上传
空空如也~
上传中..{{f.progress}}%
处理中..
上传失败,点击重试
等待中...
{{f.name}}
空空如也~
(视频){{r.oname}}
{{selectedResourcesId.indexOf(r.rid) + 1}}
处理中..
处理失败
插入表情
我的表情
共享表情
Emoji
上传
注意事项
最大尺寸100px,超过会被压缩。为保证效果,建议上传前自行处理。
建议上传自己DIY的表情,严禁上传侵权内容。
点击重试等待上传{{s.progress}}%处理中...已上传,正在处理中
空空如也~
处理中...
处理失败
加载中...
草稿箱
加载中...
此处只插入正文,如果要使用草稿中的其余内容,请点击继续创作。
{{fromNow(d.toc)}}
{{getDraftInfo(d)}}
标题:{{d.t}}
内容:{{d.c}}
继续创作
删除插入插入
插入公式
评论控制
加载中...
文号:{{pid}}
笔记
{{note.content}}
{{n.user.username}}
{{fromNow(n.toc)}} {{n.status === noteStatus.disabled ? "已屏蔽" : ""}} {{n.status === noteStatus.unknown ? "正在审核" : ""}} {{n.status === noteStatus.deleted ? '已删除' : ''}}
  • 编辑
  • 删除
  • {{n.status === 'disabled' ? "解除屏蔽" : "屏蔽" }}
我也是有底线的