第三部分: 基本擦除机制
第二部分论述了两种编程机制,FN 隧道效应以及热电子注入。为了能够再次对NVM编程,之前需要对NVM擦除。本章将论述在工业界最常应用的NVM擦除机制。
被注入浮栅之中的电子被门/氧化层能量势垒(3.2 eV)保持在其中。而在氧化层/硅接触面的电压能量势垒也大于3.0 eV,因此, 电子自然迁移的可能性很小。浮栅内储存的电子使得器件的阈值电压增大。
通常存在两种擦除方法:
1. 紫外线照射
2. FN 隧道效应
IIIa. 紫外线照射
根据图九所示,电子由紫外线照射获得足够的能量,足以克服能量势垒由浮栅区到达控制门区或者substrate区,导致期间的阈值电压降低。一般来说,阈值电压从高电位降低到中电位所需要的时间大约为10分钟。
图九,紫外擦除NVM的能带图
IIIb. FN 隧道效应
FU 隧道效应也用于对NVM的擦除,方法之一是对控制门极加高负电压。这时能带变化如图十所示。所加的电压Vcg 形成的电场造成了一个电势势垒,它给浮栅中的电子提供了一条由浮栅到达substrate的通路。
图十,浮栅NVM进行FN擦除时的能带图
图十一a和b展示了两种不同的FN擦除方法:均匀隧道效应和漏极区域隧道效应。第一种方法中,只需要一个很大的负电压被加载在控制门极;而第二种方法中,除了此负电压之外,还需要在漏极加载一个正电压。
总的来说,均匀隧道效应擦除要比漏极区域隧道效应擦除慢,但是后者可能会造成器件可靠性问题:由于集中电子隧穿造成的漏极区门氧化层破坏。