2,热电子注入
NVM 也可以通过热电子注入来实现编程。对于在p型substrate上的n型NVM使用热电子注入,而在n型substrate上的p型NVM则采用热空穴注入。热空穴注入的速度非常慢,这是因为空穴质量和Si-SiO2 能带势垒(4.7 eV ), 这也是现在绝大多数NVM生产商都采用p型substrate上n型NVM的原因。
通常存储器单元是在漏极侧夹断区向浮栅区进行热电子注入。这些热电子通过在漏极偏置电压得到能量,并且被水平偏置电压加速Elat,到达漏极附近拥有更高的电势的耗尽区域。当这些电子得到足够能量足以超过substrate和门氧化层之间的能量势垒3.2 eV时,由于加在门氧化层两侧的Vd ,它们能够被注入门氧化层中,当一个高的正向电势 Vcg 被加载于控制门极时,这些电子被吸引到了浮栅区中。此时能带变化如图七。
图七,浮栅型存储器单元在热电子注入时能带图
当浮栅被足够数量电子注入后,注入电流Ig 被减弱到几乎为0。这是因为氧化层电势Eox (在开始时用于吸引电子) 现在则排斥电子。Vcg 增加了浮栅中的电荷量同时 Vd 则影响了编程速度.
图八展示了一个利用热电子注入实现编程的NVM的横截面。 Vcg 和 Vd 为正向电压分别为15 V 和 10 V 而 Vs 和 Vsub 则接地。