已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也

最近正在恶补电磁学和python的数据处理 见猎心喜 做了一个线圈磁场模拟器 从最基本的电流元叉乘距离矢量的公式开始

写了个python程序 其中wire()是线圈的形状 可以改写成方的 多层的 将线圈分成多端直线进行计算 函数并不复杂 输入在线圈的长度位置对应的3d坐标就行

原本是用scipy的积分器(函数B1())  后来发现 电流元是对wire()的求导 然后又积分 这样速度慢很多 于是优化成B2() 感觉这样精度更高 速度相比略快

模拟是针对整个3维空间的  但是使用中发现 非常靠近线圈的地方 因为距离平方的倒数会相对非常大 在积分或者累加等计算时候 容易有较大误差 这点需要注意 毕竟点如果落到线圈本体上都是个奇异点

代码(请根据自己需要修改参数和线圈函数) 和效果如下  (模拟计算是需要一些时间的 不是死机)

当然这只是针对静态电流的

import numpy
from scipy import integrate
from matplotlib import pyplot, cm

numpy.seterr(all='warn')

#define of electromagnetic parameters
em_u=1 # times of u0
em_I=200 # Amps, current from wire_range[0] to wire_range[1]

#define of simulation cube 
simul_cube=[[-0.01, 0.01], [-0.01,0.01], [-0.01,0.01]] # coordinate range of simulation
simul_mf=[6, 6, 6] # number of simulating points of X/Y/Z axises
simul_xz=[30,30]
simul_z=200

#define of conducting wire
wire_range=[-10., 10.] # range of `l` for wire()
wire_segments=2000
      
def wire(l):   # wire shape
  r=0.007
  n=100
  h=0.008
  a=2*numpy.pi*n/(wire_range[1]-wire_range[0])
  b=h/(wire_range[1]-wire_range[0])
  return numpy.array([numpy.cos(a*l)*r, 
                      numpy.sin(a*l)*r, 
                      b*l])

coils=numpy.vectorize(wire, signature='()->(n)')(numpy.linspace(*wire_range, wire_segments))

def dB1(l, p):
  dl=(wire_range[1]-wire_range[0])/wire_segments
  w=(wire(l+dl/2)-wire(l-dl/2))/dl
  r=p-wire(l)
  return numpy.cross(w, r)/numpy.linalg.norm(r)**3

def B1(p):
  print('.', end='', flush=True)
  return 1e-7*em_I*integrate.quad_vec(dB1, *wire_range, args=(p,))[0]

def B2(p):
  print('.', end='', flush=True)
  ret=numpy.array([0.,0.,0.])
  a=p-coils[0]
  for t in coils[1:]:
    b=p-t
    ret+=numpy.cross(a, b)/numpy.linalg.norm((a+b)/2)**3
    a=b
  return 1e-7*em_I*ret

B=numpy.vectorize(B2, signature='(n)->(n)')

#draw Z->|B|
fig, ax1=pyplot.subplots()
ax1.set_title('|B| of Z axis')
ax1.set_xlim(*simul_cube[2])
ax1.set_xlabel('Z')
ax1.set_ylabel('|B|')
zs=numpy.linspace(*simul_cube[2], simul_z)
xyz=numpy.r_[numpy.zeros_like(zs), numpy.zeros_like(zs),zs].reshape(3,-1)
bz=numpy.linalg.norm(B(xyz.T), axis=1)
ax1.plot(zs, bz)

#draw X-Z->|B|
fig, ax2=pyplot.subplots(subplot_kw={'projection':'3d'}, figsize=pyplot.figaspect(0.5))
ax2.set_title('|B| of X-Z plane')
ax2.set_xlim(*simul_cube[0])
ax2.set_ylim(*simul_cube[2])
ax2.set_xlabel('X')
ax2.set_ylabel('Z')
ax2.set_zlabel('|B|')
x,z=numpy.meshgrid(numpy.linspace(*simul_cube[0], simul_xz[0]),
                   numpy.linspace(*simul_cube[2], simul_xz[1]))
b=numpy.linalg.norm(B(numpy.r_[x,numpy.zeros_like(x),z].reshape(3,-1).T), axis=1)
surf=ax2.plot_surface(x, z, b.reshape(simul_xz[1], simul_xz[0]),
                      cmap=cm.coolwarm, linewidth=0, antialiased=False)
fig.colorbar(surf, shrink=0.5, aspect=5)

fig, ax2b=pyplot.subplots()
ax2b.set_title('|B| of X-Z plane')
ax2b.set_xlabel('X')
ax2b.set_ylabel('Z')
ax2b.plot(coils.T[0], coils.T[2], alpha=0.5)
pcm=ax2b.pcolor(x, z, b.reshape(simul_xz[1], simul_xz[0]),
                cmap=cm.coolwarm, shading='auto')
fig.colorbar(pcm, extend='max')

#draw magnetic field
fig, ax3=pyplot.subplots(subplot_kw={'projection':'3d'}, figsize=pyplot.figaspect(0.5))
ax3.set_title('Magnetic field')
ax3.set_xlim(*simul_cube[0])
ax3.set_ylim(*simul_cube[1])
ax3.set_zlim(*simul_cube[2])
ax3.set_xlabel('X')
ax3.set_ylabel('Y')
ax3.set_zlabel('Z')
ax3.plot(*coils.T, alpha=0.5)
xyz=numpy.r_[numpy.meshgrid(numpy.linspace(*simul_cube[0], simul_mf[0]),
                            numpy.linspace(*simul_cube[1], simul_mf[1]),
                            numpy.linspace(*simul_cube[2], simul_mf[2]))
            ].reshape(3,-1)
mf=B(xyz.T)
ax3.quiver(*xyz, *mf.T, length=numpy.abs(simul_cube[0][1]-simul_cube[0][0])/simul_mf[0], normalize=True)

#show all
pyplot.show()

image.png

image.png

image.png

我不太懂电磁炮 但是从模拟看出 磁场最大和起伏最大的地方 是靠近线圈壁的地方 所以 弹丸应该可以优化成空心的

另一个用途是在计算开关电源变压器磁芯时候可能会有一些指导意义吧

.........................

程序改了下 增加打点显示防止误判死机 增加一种新图 可以看到线圈截面上的磁感应强度(有线圈阴影做对比)

image.png

image.png

文号 / 933478

千古风流
名片发私信
学术分 1
总主题 52 帖总回复 894 楼拥有证书:进士 学者 机友
注册于 2020-01-22 18:44最后登录 2024-11-21 18:33
主体类型:个人
所属领域:无
认证方式:手机号
IP归属地:上海

个人简介

个人开源项目: m24h.github.io

文件下载
加载中...
{{errorInfo}}
{{downloadWarning}}
你在 {{downloadTime}} 下载过当前文件。
文件名称:{{resource.defaultFile.name}}
下载次数:{{resource.hits}}
上传用户:{{uploader.username}}
所需积分:{{costScores}},{{holdScores}}下载当前附件免费{{description}}
积分不足,去充值
文件已丢失

当前账号的附件下载数量限制如下:
时段 个数
{{f.startingTime}}点 - {{f.endTime}}点 {{f.fileCount}}
视频暂不能访问,请登录试试
仅供内部学术交流或培训使用,请先保存到本地。本内容不代表科创观点,未经原作者同意,请勿转载。
音频暂不能访问,请登录试试
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

插入资源
全部
图片
视频
音频
附件
全部
未使用
已使用
正在上传
空空如也~
上传中..{{f.progress}}%
处理中..
上传失败,点击重试
等待中...
{{f.name}}
空空如也~
(视频){{r.oname}}
{{selectedResourcesId.indexOf(r.rid) + 1}}
处理中..
处理失败
插入表情
我的表情
共享表情
Emoji
上传
注意事项
最大尺寸100px,超过会被压缩。为保证效果,建议上传前自行处理。
建议上传自己DIY的表情,严禁上传侵权内容。
点击重试等待上传{{s.progress}}%处理中...已上传,正在处理中
空空如也~
处理中...
处理失败
加载中...
草稿箱
加载中...
此处只插入正文,如果要使用草稿中的其余内容,请点击继续创作。
{{fromNow(d.toc)}}
{{getDraftInfo(d)}}
标题:{{d.t}}
内容:{{d.c}}
继续创作
删除插入插入
插入公式
评论控制
加载中...
文号:{{pid}}
加载中...
详情
详情
推送到专栏从专栏移除
设为匿名取消匿名
查看作者
回复
只看作者
加入收藏取消收藏
收藏
取消收藏
折叠回复
置顶取消置顶
评学术分
鼓励
设为精选取消精选
管理提醒
编辑
通过审核
评论控制
退修或删除
历史版本
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}
ID: {{user.uid}}