将(1.18)代入(1.1)可得:
\(dT = \frac{1}{2}\rho_1[\sqrt{\frac{\varepsilon_1}{\rho_1}}\frac{i}{2\pi}\int^{\infty}_{-\infty}k[A(k)e^{ik\sqrt{\frac{\varepsilon_1}{\rho_1}}t}-B(k)e^{-ik\sqrt{\frac{\varepsilon_1}{\rho_1}}t}]e^{ikx}dk]^2dx = \frac{1}{8\pi^2}\varepsilon_1[\int^{\infty}_{-\infty}ik[A(k)e^{ik\sqrt{\frac{\varepsilon_1}{\rho_1}}t}-B(k)e^{-ik\sqrt{\frac{\varepsilon_1}{\rho_1}}t}]e^{ikx}dk]^2dx\)(1.19)
将(1.18)代入(1.5)可得:
\(dV = \frac{1}{2}\varepsilon_1[\frac{i}{2\pi}\int^{\infty}_{-\infty}k[A(k)e^{ik\sqrt{\frac{\varepsilon_1}{\rho_1}}t}+B(k)e^{-ik\sqrt{\frac{\varepsilon_1}{\rho_1}}t}]e^{ikx}dk]^2dx = \frac{1}{8\pi^2}\varepsilon_1[\int^{\infty}_{-\infty}ik[A(k)e^{ik\sqrt{\frac{\varepsilon_1}{\rho_1}}t}+B(k)e^{-ik\sqrt{\frac{\varepsilon_1}{\rho_1}}t}]e^{ikx}dk]^2dx\)(1.20)
对比发现,(1.19)和(1.20)之间只差了一个积分里的正负号,也就是说,要势能和动能相等,条件是:
\(\int^{\infty}_{-\infty}ik[A(k)e^{ik\sqrt{\frac{\varepsilon_1}{\rho_1}}t}+B(k)e^{-ik\sqrt{\frac{\varepsilon_1}{\rho_1}}t}]e^{ikx}dk = \pm\int^{\infty}_{-\infty}ik[A(k)e^{ik\sqrt{\frac{\varepsilon_1}{\rho_1}}t}-B(k)e^{-ik\sqrt{\frac{\varepsilon_1}{\rho_1}}t}]e^{ikx}dk\)(1.21)
我们先看取正号的情况,将积分里两项拆开,移项,有:
\(\int^{\infty}_{-\infty}ik[B(k)e^{-ik\sqrt{\frac{\varepsilon_1}{\rho_1}}t}]e^{ikx}dk = 0\)(1.22)
使用傅里叶变换的导数性质,有:
\(2\pi b'(x-\sqrt{\frac{\varepsilon_1}{\rho_1}}t) = 0\)(1.23)
其中B(k)是b(x)的像函数。
那么取t=0,有:
\(b'(x) = 0\)(1.24)
即\(b(x) = C\)(1.25)
而,数学上,由傅里叶变换的条件,即函数必须绝对可积,则C只能取0,物理上,一般认为无穷远处无波动,或者说波动需要无穷长的时间传播,C取0。所以,我们有:
\(b(x) = 0,B(k) = 0\)(1.26)
同理,取负号时:
\(a(x) = 0,A(k) = 0\)(1.27)
我们在继续结合初始条件之前,先讨论下(1.26)和(1.27)的物理意义。A和B至少有一个为零,意味着波动仅向一个方向传播,这便是波动中任意一点动能和势能相等的条件。当然,我们还要和初始条件\(\varphi ,\psi\)结合,接下来会讲。
时段 | 个数 |
---|---|
{{f.startingTime}}点 - {{f.endTime}}点 | {{f.fileCount}} |