接下来,我们开始讨论第一点,即无章动情况下的拉格朗日-泊松陀螺的转动。
首先,既然要无章动,那x必须仅有一个取值。即上文1、2情形。
对(1),其运动方程便是(5.8),所以这里着重讨论(2)。
代入(5.22)我们可以很容易地得出运动方程,不过由于有根直接设处,无法得出条件,所以我们直接从f(x)出发。
为了方便,我们设几个参量:
\(\alpha = \frac{2E-I_3\omega_{30}^2}{I_1}\)(5.23)
\(\beta = \frac{2mgl}{I_1}\)(5.24)
\(a = \frac{I_3\omega_{30}}{I_1}\)(5.25)
\(b = \frac{L_z}{I_1}\)(5.26)
将以上四式,代入31楼图中的f(x)
有:\(f(x) = (1-x^2)(\alpha-\beta x)-(b-ax)^2\)(5.27)
这样的形式固然不好看,但是在以下的讨论中很有用。
那么(5.2)可以写成:\(\dot{\varphi}=\frac{b-ax}{1-x^2},\dot{\psi}=\omega_{30}-\frac{b-ax}{1-x^2}x\)(5.28)
那么,我们可以开始讨论(2)情形了。
此时,我们可以明显发现,x为f(x)的二重根,那么,由定义,有:
\(f(x) = (1-x^2)(\alpha-\beta x)-(b-ax)^2=0\)(5.29)
\(\frac{df(x)}{dx} = 3\beta x^2+2(\alpha+a^2)x+2ab-\beta=0\)(5.30)
回顾下(5.23)-(5.26),发现\(\beta,a\)是较容易测量的。而\(\alpha,b\)虽然也为常量,但是较难测量,所以我们打算尝试换掉它们。
由(5.29):\(\frac{\alpha-\beta x}{1-x^2}=(\frac{b-ax}{1-x^2})^2 = \dot{\varphi}^2\)(5.31)
将(5.31)代入(5.30),以消去\(\alpha,b\),得到:
\(2x\dot{\varphi}^2-2a\dot{\varphi}+\beta =0\)(5.32)
以上便是无章动情况下进动角速度应得满足的条件。
值得说明的是,在舒幼生先生的力学第五章中,也有该式的推导,不过该书式普通物理学,所以没讲得太深,而且和本文的符号不同,所以就不引用了,不过也有很大参考价值。
很容易看出,(5.32)是关于进动角速度的二次方程,其有解的条件便是判别式大于等于零,即:
\(4a^2-8x\beta\ge 0\)(5.33)
代入各参量的值,条件可化为\(cos(\theta)\le\frac{I_3^2\omega_{30}^2}{4mglI_1}\)(5.34)
发现当\(\theta>\frac{\pi}{2}\)时,一定成立。
而\(\theta>\frac{\pi}{2}\)时,需满足:\(\omega_{30}\ge\frac{2\sqrt{mglI_1cos(\theta)}}{I_3}\)(5.35)
那么,我们可以解出:
\(\dot{\varphi}=\frac{a\pm\sqrt{a^2-2\beta x}}{2x}=\frac{I_3\omega_{30}\pm\sqrt{I_3^2\omega_{30}^2-4mglI_1cos(\theta)}}{2I_1cos(\theta)}\)(5.36)
欸等等,如果\(\theta=\frac{\pi}{2}\),即x=0怎么办?要么(5.36)洛必达取极限(注意此时只能取-,这样才是0/0未定式,取+就是正无穷,显然物理世界中不存在,因为这样能量就是正无穷),要么直接从(5.32)推,有:
\(\dot{\varphi}=\frac{mgl}{I_3\omega_{30}}\)(5.37)
我比较喜欢用洛必达推的那种方法,因为这样可以看作(5.36)仍然成立。
现在,我们只能得到必要条件,那么这是否充分呢?
这时我们就得回到一般运动规律了。
现在(5.21)两边都对时间求导,有:
\(\dot{x}=(x_2-x_3)\frac{d}{dt}(sn^2(\lambda t+\mu,k))\)(5.38)
显然重根情况x2=x3,即上式为零,章动角不变。
这就证明了充分性。
现在我们总结下第一点讨论,若f(x)满足(1),那么运动规律便是(5.8),若f(x)满足(2),那么运动规律:
\(\varphi=\frac{I_3\omega_{30}\pm\sqrt{I_3^2\omega_{30}^2-4mglI_1cos(\theta_0)}}{2I_1cos(\theta_0)}t+\varphi_0-2a_\varphi\pi\)(5.39.1)
其中\(a_\varphi\)为使得\(\varphi\in[0,2\pi]\)的自然数。
\(\theta = \theta_0\)(5.39.2)
\(\psi = \frac{(2I_1-I_3)\omega_{30}\mp\sqrt{I_3^2\omega_{30}^2-4mglI_1cos(\theta_0)}}{2I_1}t+\psi_0-2a_\psi\pi\)(5.39.3)
其中\(a_\psi\)为使得\(\psi\in[0,2\pi]\)的自然数。
(5.39)即是无章动情况下的运动方程。
如何理解呢?(5.39)的意思是,若要满足无章动的条件,那么必须在满足(5.34)的3轴角速度条件前提下,满足(5.39.1)的进动条件,这时,便无章动且自转情况为(5.39.3)。好比手中有一个静止的理想陀螺仪,我希望维持在某个章动角稳定进动,那么我必须先根据(5.34)计算出应该满足的三轴角速度,拉绳子或者用电机啊之类的什么把陀螺仪的3轴角速度,也就是此时的自转角速度,陀螺转速(现在相当于手拿着还没进动),提升到(5.34)的条件,然后再用手推一下,使得初始进动角速度满足(5.39.1),那么接下来它便会稳定进动了。
给个视频链接,没找到保存后还能动的动图……
这可能是规则进动,不过为什么是“可能”?后面会说,埋个伏笔。
为了简化计算或者定性分析的难度,我们还要做些近似工作,为与实际情况接轨,此时着重考虑进动角速度,其余的实际上不重要,需要用也可以直接代(5.2)。
由(5.36),我们可以知道,对同一个章动角,无章动且3轴角速度满足条件时,满足规则进动的有一大一小两个进动角速度。
先看小的:
如果进动角速度很小,那么它的平方可以略去,即(5.32)近似为:
\(-2a\dot{\varphi}+\beta=0\)(5.40)
则:\(\dot{\varphi}=\frac{\beta}{2a}=\frac{mgl}{I_3\omega_{30}}\)(5.41)
再看大的:
如果进动角速度很大,那么(5.32)中常数项可以略去,近似为:
\(x\dot{\varphi}-a =0\)(5.42)
则:\(\dot{\varphi} =\frac{a}{x}=\frac{I_3\omega_{30}}{I_1cos(\theta)}\)(5.43)
不难发现,上述讨论都在3轴角速度很大的时候近似得很好,所以这启发我们研究快速自转的陀螺。当然,虽然现在还不知道快速自转的陀螺怎样,但已经知道在自转角速度很大时可以用以上近似。除此之外,在章动角很接近\(\frac{\pi}{2}\)时可以用(5.43)的近似,但是在章动角等于\(\frac{\pi}{2}\)时不行,此时这个近似和精确解一样会趋于无穷大,此时只有一个进动角速度满足条件,即(5.37)
时段 | 个数 |
---|---|
{{f.startingTime}}点 - {{f.endTime}}点 | {{f.fileCount}} |