那么我们可以得出拉格朗日-泊松情况的一般解:
当\(f(x)\)仅一实根\(x_1=1\)(5.22.a.0)时:
\(\varphi = 0\)(5.22.a.1)
\(\theta = 0\)(5.22.a.2)
\(\psi = \omega_{30}t\)(5.22.a.3)
当\(f(x)\)有三实根\(x_1\ge 1\ge x_2\ge x_3\ge -1\)(5.22.b.0)时:
\(\varphi = \int_0^t\frac{L_z-I_3\omega_{30}[(x_2-x_3)sn^2(\lambda t+\mu,k)+x_3]}{I_1(1-[(x_2-x_3)sn^2(\lambda t+\mu,k)+x_3]^2)}dt+\varphi_0-2a_\varphi\pi\)(5.22.b.1)
其中\(a_\varphi\)为使得\(\varphi\in[0,2\pi]\)的自然数。
\(\theta = arccos[(x_2-x_3)sn^2(\lambda t+\mu,k)+x_3]\)(5.22.b.2)
\(\psi = \omega_{30}t-\int_0^t\frac{L_z-I_3\omega_{30}[(x_2-x_3)sn^2(\lambda t+\mu,k)+x_3]}{I_1(1-[(x_2-x_3)sn^2(\lambda t+\mu,k)+x_3]^2)}[(x_2-x_3)sn^2(\lambda t+\mu,k)+x_3]dt+\psi_0-2a_\psi\pi\)(5.22.b.3)
其中\(a_\psi\)为使得\(\psi\in[0,2\pi]\)的自然数。
好了,(5.22)便是拉格朗日-泊松情况的一般解。然而第五部分还未结束,因为要讨论。对此种情况,像上文一样讨论初始角速度集中在某轴上而后会发生什么变化,来寻找稳定情况是没有意义的,因为存在力矩,角动量时时改变。所以,接下来要讨论的是1.无章动时(即规则进动),进动如何2.有章动时的定性分析3.快速自转陀螺以及陀螺形状(即1、3轴转动惯量大小关系)对运动有何影响4.直立旋转陀螺的稳定性。
时段 | 个数 |
---|---|
{{f.startingTime}}点 - {{f.endTime}}点 | {{f.fileCount}} |