十分抱歉,这几天有事,没更……我们继续。
由于f(x)除上述情况外可以看作有3个实根,不妨设:
由上文,我们知道这些实根的范围
不妨设
那么,由(5.3):
这里提出来一个4是为了后面好换元。
这个n的值是
这里说一下,对一般的拉格朗日陀螺,实际问题中只需要代入数值求解三个根即可,理论计算中,设出来就行,这几个根可以用三次方程求根公式求解,但是本身f(x)的系数就够复杂了,再带进三次方程中……反正我是不想这么做。不过保留这三个根对实际问题没有任何影响,只是多了一步求解罢了。
接下来,对(5.11)分离变量:
两边定积分:
对上式左端的积分,理论力学上说,可以化成椭圆积分,然而,它并没有说如何做。然后,我去查了特殊函数概论这本“字典”,找到了类似情况的换元方法。我尝试使用,然而第一次发现积分变量的取值范围不对,故自己换了一次元,然后又发现k的取值范围不对,然后又换了一次元……而且每次都是快写到最后的时候才发现,真的折磨。不过最后试出来了如何换元,以下就不一一说明之前的过程了,直接给出换元的方法。(我去,我那个时候才知道有些书上巧妙的方法到底是怎么来的,不一定是什么灵光一闪,很可能是推导出来的人用头发献祭的……)
我们换元,令
显然
代入(5.13)得(这一步就直接写结果了啊,就是硬算没啥物理含义):
由定义,显然
那么,(5.15)可以直接积分,然后把(5.14)代入:
那么,便很容易解出x(t):
在进一步设元化简之前,我们需要讨论一下这个n。
从f(x)的图像可以看出,横坐标为x,纵坐标为f(x)的点在图像上函数值大于零,且在[-1,1]之间的部分运动,所以遇到函数值为零的点,或者横坐标为-1,1的点,n的值必须改变,以改变点运动的方向。由上文的图片可以看出,三实根情况下,一定不会遇到横坐标为-1的点,而若遇到横坐标为1的点,一定同时遇到函数值为零的点。也就是说,n在f(x)=0处改变符号,即n在
接下来,为了方便,同上文一样定下参量(这里就和从上文取一样的了,反正是不同情况,不会搞混,反而可以一一对应,更加美观)
那么,(5.17)便可以化成:
这样,结合(5.2)便可以得出拉格朗日-泊松情况在f(x)有三个实根情况下的一般解。