十分抱歉,这几天有事,没更……我们继续。
由于f(x)除上述情况外可以看作有3个实根,不妨设:
\(f(x) = \frac{2mgl}{I_1}(x-x_1)(x-x_2)(x-x_3)\)(5.9)
由上文,我们知道这些实根的范围
不妨设\(x_1\ge 1\ge x_2\ge x\ge x_3\ge -1\)(5.10)
那么,由(5.3):
\(\dot{x}=n\sqrt{\frac{mgl}{2I_1}}\sqrt{4(x-x_1)(x-x_2)(x-x_3)}\)(5.11)
这里提出来一个4是为了后面好换元。
这个n的值是\(\pm1\),用处同前。
这里说一下,对一般的拉格朗日陀螺,实际问题中只需要代入数值求解三个根即可,理论计算中,设出来就行,这几个根可以用三次方程求根公式求解,但是本身f(x)的系数就够复杂了,再带进三次方程中……反正我是不想这么做。不过保留这三个根对实际问题没有任何影响,只是多了一步求解罢了。
接下来,对(5.11)分离变量:
\(\frac{dx}{\sqrt{4(x-x_1)(x-x_2)(x-x_3)}}=n\sqrt{\frac{mgl}{2I_1}}dt\)(5.12)
两边定积分:
\(\int_{x(0)}^{x(t)}\frac{dx}{\sqrt{4(x-x_1)(x-x_2)(x-x_3)}}=n\sqrt{\frac{mgl}{2I_1}}t\)(5.13)
对上式左端的积分,理论力学上说,可以化成椭圆积分,然而,它并没有说如何做。然后,我去查了特殊函数概论这本“字典”,找到了类似情况的换元方法。我尝试使用,然而第一次发现积分变量的取值范围不对,故自己换了一次元,然后又发现k的取值范围不对,然后又换了一次元……而且每次都是快写到最后的时候才发现,真的折磨。不过最后试出来了如何换元,以下就不一一说明之前的过程了,直接给出换元的方法。(我去,我那个时候才知道有些书上巧妙的方法到底是怎么来的,不一定是什么灵光一闪,很可能是推导出来的人用头发献祭的……)
我们换元,令\(\xi = \sqrt{\frac{x-x_3}{x_2-x_3}}\)(1145.14)
显然\(\xi\in[-1,1]\)
代入(5.13)得(这一步就直接写结果了啊,就是硬算没啥物理含义):
\(\int_{\sqrt{\frac{x(0)-x_3}{x_2-x_3}}}^{\sqrt{\frac{x(t)-x_3}{x_2-x_3}}}\frac{d\xi}{\sqrt{(1-\xi^2)(1-(\sqrt{\frac{x_2-x_3}{x_1-x_3}})^2\xi^2)}}=n\sqrt{\frac{(x_2-x_3)mgl}{2I_1}}t\)(5.15)
由定义,显然\(\sqrt{\frac{x_2-x_3}{x_1-x_3}}\in[0,1]\)
那么,(5.15)可以直接积分,然后把(5.14)代入:
\(F(arcsin(\sqrt{\frac{x(t)-x_3}{x_2-x_3}}),\sqrt{\frac{x_2-x_3}{x_1-x_3}})-F(arcsin(\sqrt{\frac{x(0)-x_3}{x_2-x_3}}),\sqrt{\frac{x_2-x_3}{x_1-x_3}})=n\sqrt{\frac{(x_2-x_3)mgl}{2I_1}}t\)(5.16)
那么,便很容易解出x(t):
\(cos(\theta) = x(t) = (x_2-x_3)sn^2(n\sqrt{\frac{(x_2-x_3)mgl}{2I_1}}t+F(arcsin(\sqrt{\frac{x(0)-x_3}{x_2-x_3}}),\sqrt{\frac{x_2-x_3}{x_1-x_3}}),\sqrt{\frac{x_2-x_3}{x_1-x_3}})+x_3\)(5.17)
在进一步设元化简之前,我们需要讨论一下这个n。
从f(x)的图像可以看出,横坐标为x,纵坐标为f(x)的点在图像上函数值大于零,且在[-1,1]之间的部分运动,所以遇到函数值为零的点,或者横坐标为-1,1的点,n的值必须改变,以改变点运动的方向。由上文的图片可以看出,三实根情况下,一定不会遇到横坐标为-1的点,而若遇到横坐标为1的点,一定同时遇到函数值为零的点。也就是说,n在f(x)=0处改变符号,即n在
\(cos(\theta)=x_3\)或\(cos(\theta)=x_2\)处改变符号。由(5.17)易知,当sn2=0时\(cos(\theta)=x_3\),当sn2=1时\(cos(\theta)=x_2\)。那么,同上文21楼的讨论,n是否改变符号对函数知无影响,所以可以当作常量取初始值。
接下来,为了方便,同上文一样定下参量(这里就和从上文取一样的了,反正是不同情况,不会搞混,反而可以一一对应,更加美观)
\(\lambda = n\sqrt{\frac{(x_2-x_3)mgl}{2I_1}}\)(5.18)
\(\mu = F(arcsin(\sqrt{\frac{x(0)-x_3}{x_2-x_3}}),\sqrt{\frac{x_2-x_3}{x_1-x_3}}) = F(arcsin(\sqrt{\frac{cos(\theta_0)-x_3}{x_2-x_3}}),\sqrt{\frac{x_2-x_3}{x_1-x_3}})\)(5.19)
\(k = \sqrt{\frac{x_2-x_3}{x_1-x_3}}\)(5.20)
那么,(5.17)便可以化成:
\(cos(\theta)=(x_2-x_3)sn^2(\lambda t+\mu,k)+x_3\)(5.21)
这样,结合(5.2)便可以得出拉格朗日-泊松情况在f(x)有三个实根情况下的一般解。
时段 | 个数 |
---|---|
{{f.startingTime}}点 - {{f.endTime}}点 | {{f.fileCount}} |