对函数(5.1),其实写法有很多种,后面讨论是肯定不会用这种的,不过这样看着舒服,现在就这么写吧。
我们定义:
\(f(x)=\frac{2mgl}{I_1}[x^3+\frac{I_3(I_1-I_3)\omega_{30}^2-2I_1E}{2mglI_1}x^2+\frac{I_3\omega_{30}L_z-mglI_1}{mglI_1}x+\frac{I_1(2E-I_3\omega_{30}^2)-L_z^2}{2mglI_1}]\)(5.3)
则\(\dot{x}^2 = f(x)\)
我们先来研究下f(x)的性质。
首先,由于这个问题是可解的,所以,f(x)在[-1,1]上有至少一个值大于零,因为x是章动角的余弦值,而它对时间的导数一定存在。
接下来,带进两个特殊值,计算。
有:
\(f(1)=\frac{-I_3^2\omega_{30}^2+2I_3\omega_{30}L_z-L_z^2}{I_1^2}=-(\frac{I_3\omega_{30}-L_z}{I_1})^2 \le 0\)(5.4)
\(f(-1)=\frac{-I_3^2\omega_{30}^2-2I_3\omega_{30}L_z-L_z^2}{I_1^2}=-(\frac{I_3\omega_{30}+L_z}{I_1})^2 \le 0\)(5.5)
所以,\(f(-1)<f(1)\le0\)(5.6)
所以,我们可以知道f(x)的大致形状,分为4类。
这个不方便画图,所以只能手画了。
除了情况(1),其他的包括重根都可以看作有三个零点,两个在-1到1之间,一个在1以上。
那么我们先讨论最特殊的情况(1)
此时,若要\(\dot{x}=\frac{d cos(\theta)}{dt}\)存在,只有可能\(cos(\theta)=1\),即
\(\theta=0\)(5.7)
此时章动角只可能为零。
此时由(5.2),代入可得进动角速度,自转角速度。
代入x=1,发现进动角速度是个0/0未定式,可以洛必达求解,当然最简单的方法就是取零,毕竟还是因为欧拉角的缺陷,所以按习惯取有自转无进动。也就是说,此时刚体直立旋转。不妨取初始自转角为零,有:
\(\varphi = 0,\theta = 0,\psi = \omega_{30}t\)(5.8)
时段 | 个数 |
---|---|
{{f.startingTime}}点 - {{f.endTime}}点 | {{f.fileCount}} |