终于,我们得到了欧拉潘索情形的结果了
\(\varphi = \frac{L}{I_3}t-n_3L\sqrt{\frac{I_1(I_3-I_2)}{I_2I_3(L^2-2I_1T)}}\int_0^t\frac{\sqrt{I_1cn^2(\lambda t+\mu,k)+\frac{I_2(I_3-I_1)}{I_3-I_2}sn^2(\lambda t+\mu,k)}}{dn(\lambda t+\mu,k)sn(\lambda t+\mu,k)}\frac{d}{dt}(\frac{cn(\lambda t+\mu,k)}{\sqrt{I_1cn^2(\lambda t+\mu,k)+\frac{I_2(I_3-I_1)}{I_3-I_2}sn^2(\lambda t+\mu,k)}})dt+\varphi_0-2a\pi\)(4.48.1)
(a = 0,1,2……,a是使得\(\varphi\in[0,2\pi]\)自然数)
\(\theta = arccos(\frac{n_3}{L}\sqrt{\frac{I_3(L^2-2I_1T)}{I_3-I_1}}dn(\lambda t+\mu,k))\)(4.48.2)
当\(cn(\lambda t+\mu,k) > 0\)时:
\(\psi = arccos(\sqrt{I_2}\frac{sn(\lambda t+\mu,k)}{\sqrt{I_1cn^2(\lambda t+\mu,k)+\frac{I_2(I_3-I_1)}{I_3-I_2}sn^2(\lambda t+\mu,k)}})\)(4.48.3.1)
当\(cn(\lambda t+\mu,k) < 0\)时:
\(\psi = 2\pi-arccos(\sqrt{I_2}\frac{sn(\lambda t+\mu,k)}{\sqrt{I_1cn^2(\lambda t+\mu,k)+\frac{I_2(I_3-I_1)}{I_3-I_2}sn^2(\lambda t+\mu,k)}})\)(4.48.3.2)
当\(cn(\lambda t+\mu,k) = 0\)时:自转角与dt前后的自转角仅差一小量,可确定为0还是\(\pi\)
以上便是欧拉潘索情形的一般解,其中参量的值在(4.27)(4.28)(4.32)中确定。
时段 | 个数 |
---|---|
{{f.startingTime}}点 - {{f.endTime}}点 | {{f.fileCount}} |