已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也

由定义,我们可以发现,Q、R都大于零,这样就满足条件了。如果我们要把(4.18)化为(1.7)形式,那么很自然的想法是两边同乘Q或R,然后右边塞到微分里面,换个元,那么参数k就应该是Q/R或R/Q了。但是要满足k在0到1之间,积分变量要在-1到1之间,所以需要讨论……吗?别忘了,我们还没有定义1、3轴,现在给出1、3轴的定义:

1、3轴转动惯量及初始角速度应该满足\(Q\ge R\),即\( (I_3-I_2)(L^2-2I_1T)\ge(I_2-I_1)(2I_3T-L^2)\),代入初始值,有:

\((I_3-I_2)I_3\omega_{30}^2 \ge (I_2-I_1)I_1\omega_{10}^2\)(4.19)

我们有\(\frac{R}{Q}\le 1\),那么我们就两端同乘Q,有:

\(QPdt = \frac{dQ\omega_2}{\sqrt{(1-Q^2\omega_2^2)(1-(\frac{R}{Q})^2Q^2\omega_2^2)}}\)(4.20)

这里我们再定义:

\(\lambda = QP = n_1n_3n\sqrt{\frac{(I_3-I_2)(L^2-2I_1T)}{I_1I_2I_3}}\)(4.21)

\(k =\frac{R}{Q} = \sqrt{\frac{(I_2-I_1)(2I_3T-L^2)}{(I_3-I_2)(L^2-2I_1T)}}\)(4.22)

\(\xi = Q\omega_2 = \sqrt{\frac{I_2(I_3-I_2)}{2I_3T-L^2}}\omega_2\)(4.23)

于是,由(4.19),我们有:

\(\int_0^t\lambda dt = \int_{\xi(0)}^{\xi(t)}\frac{d\xi}{\sqrt{(1-\xi^2)(1-k^2\xi^2)}}\)(4.24)

这样就可以直接积分了……吗?不,我们虽然保证了\(k_1\in[0,1]\),但\(\xi_1\)的范围还不知道,由于它的值是常量,我们不妨代入初始值。我们希望它是在-1与1之间的,这样我们就可以直接用第一类椭圆积分了。现在我们来证一下。

显然\(\xi_1\)大于等于零,所以要证的只有它小于等于一。

结合(1.3)(1.4),移项有:\(I_2(I_3-I_2)\omega_2^2 = (2I_3T-L^2)-I_1(I_3-I_1)\omega_1^2\)(4.25)

代入即有\(\xi = \sqrt{1-\frac{I_1(I_3-I_1)\omega_1^2}{2I_3T-L^2}}\)(4.26)

(4.26)中根式里面减去的那一项由前面的讨论和定义可知,一定大于等于零,所以显然\(\xi\in[0,1]\)

现在我们终于可以放下一切顾虑愉快地积分了!


综上所述,我们有(4.24):

\(\int_0^t\lambda dt = \int_{\xi(0)}^{\xi(t)}\frac{d\xi}{\sqrt{(1-\xi^2)(1-k^2\xi^2)}}\)

当1、3轴取向满足\((I_3-I_2)I_3\omega_{30}^2 \ge (I_2-I_1)I_1\omega_{10}^2\)时:

\(\lambda = n_1n_3n\sqrt{\frac{(I_3-I_2)(L^2-2I_1T)}{I_1I_2I_3}}\)(4.27)

\(k = \sqrt{\frac{(I_2-I_1)(2I_3T-L^2)}{(I_3-I_2)(L^2-2I_1T)}}\)(4.28)

\(\xi = \sqrt{\frac{I_2(I_3-I_2)}{2I_3T-L^2}}\omega_2\)(4.29)

文号 / 928540

名片发私信
学术分 0
总主题 9 帖总回复 114 楼拥有证书:进士 机友
注册于 2020-08-28 12:52最后登录 2024-10-24 13:00
主体类型:个人
所属领域:无
认证方式:手机号
IP归属地:广东

个人简介

火箭爱好者

文件下载
加载中...
{{errorInfo}}
{{downloadWarning}}
你在 {{downloadTime}} 下载过当前文件。
文件名称:{{resource.defaultFile.name}}
下载次数:{{resource.hits}}
上传用户:{{uploader.username}}
所需积分:{{costScores}},{{holdScores}}下载当前附件免费{{description}}
积分不足,去充值
文件已丢失

当前账号的附件下载数量限制如下:
时段 个数
{{f.startingTime}}点 - {{f.endTime}}点 {{f.fileCount}}
视频暂不能访问,请登录试试
仅供内部学术交流或培训使用,请先保存到本地。本内容不代表科创观点,未经原作者同意,请勿转载。
音频暂不能访问,请登录试试
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

插入资源
全部
图片
视频
音频
附件
全部
未使用
已使用
正在上传
空空如也~
上传中..{{f.progress}}%
处理中..
上传失败,点击重试
等待中...
{{f.name}}
空空如也~
(视频){{r.oname}}
{{selectedResourcesId.indexOf(r.rid) + 1}}
处理中..
处理失败
插入表情
我的表情
共享表情
Emoji
上传
注意事项
最大尺寸100px,超过会被压缩。为保证效果,建议上传前自行处理。
建议上传自己DIY的表情,严禁上传侵权内容。
点击重试等待上传{{s.progress}}%处理中...已上传,正在处理中
空空如也~
处理中...
处理失败
加载中...
草稿箱
加载中...
此处只插入正文,如果要使用草稿中的其余内容,请点击继续创作。
{{fromNow(d.toc)}}
{{getDraftInfo(d)}}
标题:{{d.t}}
内容:{{d.c}}
继续创作
删除插入插入
插入公式
评论控制
加载中...
文号:{{pid}}
加载中...
详情
详情
推送到专栏从专栏移除
设为匿名取消匿名
查看作者
回复
只看作者
加入收藏取消收藏
收藏
取消收藏
折叠回复
置顶取消置顶
评学术分
鼓励
设为精选取消精选
管理提醒
编辑
通过审核
评论控制
退修或删除
历史版本
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}
ID: {{user.uid}}