那么,现在讨论一下无力矩的情况下刚体绕主轴自由转动的平衡稳定性:
我们先假设刚体绕着转动惯量最大的3轴自由转动,1、2轴角速度为零,由欧拉动力学公式(1.6.3)有
和
不难看出(4.6)(4.7)都是二阶常系数线性常微分方程,并且它们的特征方程都是
由微分方程的知识可以得知,特征方程有两个单实根、一个二重实根、一对共轭复根,也就是特征方程的判别式大于、等于、小于零的情况,分别对应指数函数形式、指数函数与一次函数乘积形式(当然这个特征方程的判别式等于零的话,重根就是零,所以再这个问题中解就是一次函数形式)、三角函数形式的通解,如果要稳定,则1、2轴的角速度应该恒为小量,即只能是三角函数形式。
不难看出,对i轴(i= 1,2,3),Ai>0则稳定,其余情况都不稳定。仿照上文的讨论,不难写出:
由
图像来源神十四太空授课,航天员做“扳手翻转”实验,曾被苏联保密10年?_腾讯新闻 (qq.com)
里面还有几张动图
好了,那我们看看三轴转动惯量不相同的情况下如果稳定(即绕1、3轴定轴转动)的欧拉角的方程是什么吧,至于两轴转动惯量相同和三轴转动惯量相同后面会作为特例讨论的。
很明显这个时候是定轴转动,进动角和章动角都是常数,而自转角速度是常数。我们知道对固定点角动量的方向再这个情况下不会改变,于是我们不妨取其方向作为转轴吧。由(1.3)知,这个时候角动量与转轴(1、3轴)方向相同。由于欧拉角的缺陷——再章动角为零的情况下,无法分辨自转与进动,这里就按照一般习惯称为自转,毕竟说定轴转动下有进动无自转很奇怪嘛。然后,由于仅一个轴有角速度,不妨取初始自转角为零,那么,对于初始时仅绕1、3轴自由转动,我们分别有最终结果:
很好,这样我们就得到了一般的欧拉-潘索情形在两种情况下的特例。至于为什么要先提一嘴这俩情况,后面会说。
那对于绕2轴的不稳定情况、一开始不绕任何主轴转动的定轴转动和一开始就是定点转动的更加一般的情况呢?且听下回分解