已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也

四、终于进入正题了!开始推导一般的欧拉-潘索情况!

(以下默认\(I_{1}\leq I_{2}\leq I_{3}\)或\(I_{3}\leq I_{2}\leq I_{1}\),或若选取的刚体系不是这样,那么换个系就好了,至于1、3轴到底怎么选取,后面会讲

由于(2.1),本情况力矩为零,不用管力和坐标的关系,所以我们可以先求解欧拉动力学方程(1.6),得到三轴角速度后再带回欧拉运动学方程(1.2)。由于力矩为零,且力作用再固定点上不做功,故动能和角动量的大小是常量。

由(1.4):\(I_1\omega_1^2+I_2\omega_2^2+I_3\omega_3^2=2T\)(4.1)

由(1.3):\(I_1^2\omega_1^2 +I_2^2\omega_2^2+I_3^2\omega_3^2=\vec L \cdot\vec L =L^2\)(4.2)

接下来我们尝试通过(4.1)(4.2)用\(\omega_2\)表示\(\omega_1\)和\(\omega_3\),至于为什么要这么做,为什么一定要用2轴角速度表示1、3轴角速度,一会儿会说明的(悄悄埋个伏笔)

求解一个二元一次方程组得到\(\omega_1^2\)和\(\omega_3^2\)的表达式然后开方即可,不过多赘述,有:

\(\omega_1\ =n_1\sqrt{\frac{(2I_3T-L^2)-I_2(I_3-I_2)\omega_2^2}{I_1(I_3-I_1)}}\)(4.3)

\(\omega_3\ =n_3\sqrt{\frac{(L^2-2I_1T)-I_2(I_2-I_1)\omega_2^2}{I_3(I_3-I_1)}}\)(4.4)

以上两式中的n1、n3的值是\(\pm1\),而我为何不用\(\pm\)后面会说,方便计算。由于(4.3)(4.4)式是对整个运动过程都成立的,所以n1、n3的值可以由初始状态\(\omega_{10}\)和\(\omega_{30}\)的方向决定。

那么理顺一下思路,我们以及用2轴角速度表示了1、3轴的角速度,我们可以通过测量初始时刻三个欧拉角的值及其对时间的导数的值得到三轴初始角速度,通过1、3轴初始角速度可以确定n1和n3的值,也就是确定(4.3)(4.4)式中的根式的符号。动能T的大小和角动量L的大小及方向都可以通过(1.4)(1.3)式得出。由于(4.3)(4.4)是全过程成立的,只要我们能够解出2轴角速度随时间的变化关系,我们可以得知任意时刻1、3轴角速度的值,进而求解欧拉运动学方程得出欧拉角随时间的变化,完成本类问题的求解。也就是说,本类问题化成了求解2轴角速度随时间变化关系的问题

我们不是由欧拉动力学方程吗?将(4.3)(4.4)两式带入(1.6.2),又有M2=0,稍微变形一下,可以导出这样一个微分方程:

\(\dot{\omega_2} =\frac{n_1n_3n}{I_2\sqrt{I_1I_3}}\sqrt{((2I_3T-L^2)-I_2(I_3-I_2)\omega_2^2)((L^2-2I_1T)-I_2(I_2-I_1)\omega_2^2)}\)(4.5)

(4.5)中的n的值是\(\pm1\),根据\(I_3-I_1\)的正负确定,因为导出(4.5)时需要求根号下\(I_3-I_1\)的平方,再和\(I_3-I_1\)约分,所以会带符号。

这个微分方程有没有种熟悉的感觉?分离变量后就发现时间那一边可以很简单地积分出来,而角速度那一边,根式在分母,根式里面式四次式,且由两个二次式的乘积组成,而这两个二次式都是一个常数减去另一个常数乘变量的平方形式。这很像第一类椭圆积分欸!于是,我们要尝试用椭圆积分表示2轴角速度。

不过先等等,中间要插入有关在无力矩无约束的情况下刚体绕主轴自由定轴转动的动平衡稳定性问题。至于为什么要先讨论这个,后面就知道了。不过这些要明天再更了啊。

文号 / 928409

名片发私信
学术分 0
总主题 8 帖总回复 97 楼拥有证书:进士 机友
注册于 2020-08-28 12:52最后登录 2024-05-09 12:44
主体类型:个人
所属领域:无
认证方式:手机号
IP归属地:广东

个人简介

火箭爱好者

文件下载
加载中...
{{errorInfo}}
{{downloadWarning}}
你在 {{downloadTime}} 下载过当前文件。
文件名称:{{resource.defaultFile.name}}
下载次数:{{resource.hits}}
上传用户:{{uploader.username}}
所需积分:{{costScores}},{{holdScores}}下载当前附件免费{{description}}
积分不足,去充值
文件已丢失

当前账号的附件下载数量限制如下:
时段 个数
{{f.startingTime}}点 - {{f.endTime}}点 {{f.fileCount}}
视频暂不能访问,请登录试试
仅供内部学术交流或培训使用,请先保存到本地。本内容不代表科创观点,未经原作者同意,请勿转载。
音频暂不能访问,请登录试试
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

插入资源
全部
图片
视频
音频
附件
全部
未使用
已使用
正在上传
空空如也~
上传中..{{f.progress}}%
处理中..
上传失败,点击重试
等待中...
{{f.name}}
空空如也~
(视频){{r.oname}}
{{selectedResourcesId.indexOf(r.rid) + 1}}
处理中..
处理失败
插入表情
我的表情
共享表情
Emoji
上传
注意事项
最大尺寸100px,超过会被压缩。为保证效果,建议上传前自行处理。
建议上传自己DIY的表情,严禁上传侵权内容。
点击重试等待上传{{s.progress}}%处理中...已上传,正在处理中
空空如也~
处理中...
处理失败
加载中...
草稿箱
加载中...
此处只插入正文,如果要使用草稿中的其余内容,请点击继续创作。
{{fromNow(d.toc)}}
{{getDraftInfo(d)}}
标题:{{d.t}}
内容:{{d.c}}
继续创作
删除插入插入
插入公式
评论控制
加载中...
文号:{{pid}}
加载中...
详情
详情
推送到专栏从专栏移除
设为匿名取消匿名
查看作者
回复
只看作者
加入收藏取消收藏
收藏
取消收藏
折叠回复
置顶取消置顶
评学术分
鼓励
设为精选取消精选
管理提醒
编辑
通过审核
评论控制
退修或删除
历史版本
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}
ID: {{user.uid}}