二、重刚体定点转动可解出解析解的情况的分类:
欧拉-潘索情况:对刚体的三主轴惯量没有要求,但要求所有力作用于固定点,即\(\vec{M} = \vec{0}\)(2.1)
常见于忽略空气阻力的抛体运动下求解刚体的转动情况等无力矩转动问题,以及陀螺仪的分析,与刚体的一般运动密切相关。
2.拉格朗日-泊松情况:要求三个主轴惯量至少有两个相等,且质心在动力对称轴上且不与固定点重合,常见于陀螺的分析。
3.科凡律夫斯卡雅情况:要求\(2I_{1} =I_{2}=I_{3}\),质心在惯量椭球赤道平面上。由于其求解涉及超几何函数,没学过,也没什么时间去学,再加上其适用情况很窄,故本文不讨论,有大佬懂的话还请补充。
值得说明的是,以上就以及是被找到的全部可解的情况了,其他的情况,都没找到解法,只能数值求解,就连这三种情况,求解方法也完全看不到共性。
我再网上找到的解法都是1.2.的,然而几乎都停在了导出欧拉动力力学方程的特殊情况那一步,这对有好奇心的人十分不友好,所以,接下来会详细阐述它们如何求解,并给出最终结果。在此之前,我们先看一个例子——周衍柏先生的理论力学教程中推导对称欧拉-潘索情况的方法(即1.情况多加一个至少两个主轴惯量相等的条件)。下面会发图。
时段 | 个数 |
---|---|
{{f.startingTime}}点 - {{f.endTime}}点 | {{f.fileCount}} |