那么,由能量守恒\(T + V = E\)得:
\( \frac{1}{2}(I_{1}\omega_{1}^{2}+I_{2}\omega_{2}^{2}+I_{3}\omega_{3}^{2})+ V = E\)(1.5)
由角动量定理\(\dot{\vec{L}} = \vec{M}\)得欧拉动力学公式:
\(I_{1}\dot{\omega_{1}}-(I_{2}-I_{3})\omega_{2}\omega_{3}=M_{1}\)(1.6.1)
\(I_{2}\dot{\omega_{2}}-(I_{3}-I_{1})\omega_{3}\omega_{1}=M_{2}\)(1.6.2)
\(I_{3}\dot{\omega_{3}}-(I_{1}-I_{2})\omega_{1}\omega_{2}=M_{3}\)(1.6.3)
时段 | 个数 |
---|---|
{{f.startingTime}}点 - {{f.endTime}}点 | {{f.fileCount}} |