上面已经提到低温吸收发的缺点是蒸馏分离费能,改进的方向应该是一体化高温气相反应冷凝分离。
分步反应是不经济的,合成和分离都要额外热源。
一体化高温气相反应的一些思考
反应可行性未知,需通过实验确认,但根据一些关于氯和氯化氢高温气相反应动力学研究的论文可以认为:在反应条件下(350摄氏度略高于98.3硫酸的337摄氏度)氯即使发生水解反应生成氧气,反应体系中复杂的自由基反应仍有可能氧化二氧化硫,并以生成三氧化硫或硫酸为终止反应
反应装置设计:二氧化硫和氯按摩尔比为1的比例配混,为反应完全氯略过量,通过喷嘴通入一内衬有耐酸耐火材料的球形反应炉与,同样通过喷嘴通入的高温水蒸气(水要过量一些,蒸汽温度主要看热交换器能加热到多少了,反应炉需要另外烧水蒸气启动)互击发生反应。反应炉炉下方有用水冷却的列管,冷凝分离出浓硫酸,剩余出炉气在混合器中经冷凝硫酸洗涤除去残余的硫酸后经冷却得到盐酸。冷却管的材料是个难题,混合器的除去率也是一个难题,不知道硫酸中是否会混有微量的盐酸。
其实这个反应在氯碱厂看来是为为了“省氢用氯”(这一点和直接水解氯意图相同,但后者低温太慢,高温又要烧水,实在不经济,该法可以认为是它的一种改进)
但实际上的产品无论硫酸还是氢气都没有成本优势,甚至传统产品盐酸还可能因为混入硫酸导致品质下降,只能搞产线或地理优势。
二氧化硫可以买成品或自己烧,涡轮发电直接供给电解槽,但这样搞毫无疑问会使产线的灵活性和抗风险能力下降。
人们总是希望把“放能反应”(焚硫、氨氧化)和“充能反应”(电解、热解)结合起来以达到节能的目的,以上不过是这样的思想的一个体现。谁要是整出了可工业普及的硫-氧燃料电池(产物二氧化硫)和氨氧燃料电池(产物一氧化氮)估计诺奖手到擒来了。
另外真要挖掘一下氯碱电解槽的潜力的话,我想直接在阴极室来个“碱性加氢”电化学合成似乎也可以。
时段 | 个数 |
---|---|
{{f.startingTime}}点 - {{f.endTime}}点 | {{f.fileCount}} |