已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也

可能有点挖坟了...

Wikipedia上是这样说的:

Material susceptibility 材料敏感性

Hydrogen embrittles a variety of metals including steel,[19][20] aluminium (at high temperatures only[21]), and titanium.[22] Austempered iron is also susceptible, though austempered steel (and possibly other austempered metals) displays increased resistance to hydrogen embrittlement.[23] NASA has reviewed which metals are susceptible to embrittlement and which only prone to hot hydrogen attack: nickel alloys, austenitic stainless steels, aluminium and alloys, copper (including alloys, e.g. beryllium copper).[2] Sandia has also produced a comprehensive guide.[24]
氢使各种金属脆化,包括钢、铝( [19] [20] 仅在 [21] 高温下)和钛。 [22] 等温淬火铁也容易受到影响,尽管等温淬火钢(可能还有其他等温淬火金属)表现出更强的抗氢脆性。 [23] 美国宇航局已经审查了哪些金属容易脆化,哪些金属只容易受到热氢的侵蚀:镍合金、奥氏体不锈钢、铝和合金、铜(包括合金,例如铍铜)。 [2] 桑迪亚实验室还制作了一份全面的指南。 [24]

Steels 钢

Steels were embrittled with hydrogen through cathodic charging. Heat treatment (baking) was used to reduce hydrogen content. Lower bake times resulted in quicker fracture times due to higher hydrogen content.[25]
钢通过阴极充电变得氢脆化。采用热处理(烘烤)来降低氢含量。由于氢含量较高,烘烤时间越短,断裂时间就越短。 [25]

Steel with an ultimate tensile strength of less than 1000 MPa (~145,000 psi) or hardness of less than HRC 32 on the Hardness Rockwell Scale is not generally considered susceptible to hydrogen embrittlement. As an example of severe hydrogen embrittlement, the elongation at failure of 17-4PH precipitation hardened stainless steel was measured to drop from 17% to only 1.7% when smooth specimens were exposed to high-pressure hydrogen[2]
极限抗拉强度小于 1000 MPa (~145,000 psi) 或硬度洛氏硬度低于 HRC 32 的钢通常被认为不易发生氢脆。作为严重氢脆的一个例子,当光滑的试样暴露于高压氢 [2] 气时,17-4PH沉淀硬化不锈钢的破坏伸长率从17%下降到仅1.7%

As the strength of steels increases, the fracture toughness decreases, so the likelihood that hydrogen embrittlement will lead to fracture increases. In high-strength steels, anything above a hardness of HRC 32 may be susceptible to early hydrogen cracking after plating processes that introduce hydrogen. They may also experience long-term failures anytime from weeks to decades after being placed in service due to accumulation of hydrogen over time from cathodic protection and other sources. Numerous failures have been reported in the hardness range from HRC 32-36 and more above; therefore, parts in this range should be checked during quality control to ensure they are not susceptible.
随着钢强度的增加,断裂韧性降低,因此氢脆导致断裂的可能性增加。在高强度钢中,任何硬度高于HRC 32的钢都可能在引入氢气的电镀工艺后容易发生早期氢裂纹。由于阴极保护和其他来源的氢气随着时间的推移而积累,它们也可能在投入使用后数周至数十年的任何时间出现长期故障。据报道,在HRC 32-36及以上的硬度范围内发生了许多故障;因此,在质量控制过程中应检查此范围内的零件,以确保它们不易受到影响。

Testing the fracture toughness of hydrogen-charged, embrittled specimens is complicated by the need to keep charged specimens very cold, in liquid nitrogen, to prevent the hydrogen diffusing away.[26]
测试带氢、脆化试样的断裂韧性很复杂,因为需要在液氮中保持带电试样非常低温,以防止氢扩散。 [26]

Copper 铜

Copper alloys which contain oxygen can be embrittled if exposed to hot hydrogen. The hydrogen diffuses through the copper and reacts with inclusions of Cu
2O
, forming 2 metallic Cu atoms and H2O (water), which then forms pressurized bubbles at the grain boundaries. This process can cause the grains to literally be forced away from each other, and is known as steam embrittlement (because steam is directly produced inside the copper crystal lattice, not because exposure of copper to external steam causes the problem).
含有氧气的铜合金如果暴露在热氢中会脆化。氢气通过铜扩散并与夹杂物反应 Cu
2O
 ,形成 2 个金属铜原子和 H2O (水),然后在晶界处形成加压气泡。这个过程会导致晶粒从字面上被迫彼此远离,被称为蒸汽脆化(因为蒸汽是在铜晶格内部直接产生的,而不是因为铜暴露在外部蒸汽中会导致问题)。

Vanadium, nickel, and titanium
钒、镍和钛[edit]

Alloys of vanadiumnickel, and titanium have a high hydrogen solubility, and can therefore absorb significant amounts of hydrogen. This can lead to hydride formation, resulting in irregular volume expansion and reduced ductility (because metallic hydrides are fragile ceramic materials). This is a particular issue when looking for non-palladium-based alloys for use in hydrogen separation membranes.[18]
钒、镍和钛合金具有很高的氢溶解度,因此可以吸收大量的氢。这可能导致氢化物的形成,导致不规则的体积膨胀和延展性降低(因为金属氢化物是易碎的陶瓷材料)。在寻找用于氢分离膜的非钯基合金时,这是一个特殊的问题。 [18]

Prevention 预防

Hydrogen embrittlement can be prevented through several methods, all of which are centered on minimizing contact between the metal and hydrogen, particularly during fabrication and the electrolysis of water. Embrittling procedures such as acid pickling should be avoided, as should increased contact with elements such as sulfur and phosphate.
可以通过多种方法防止氢脆,所有这些方法都以尽量减少金属和氢之间的接触为中心,特别是在制造和电解水过程中。应避免酸洗等脆化程序,也应避免增加与硫和磷酸盐等元素的接触。

If the metal has not yet started to crack, hydrogen embrittlement can be reversed by removing the hydrogen source and causing the hydrogen within the metal to diffuse out through heat treatment. This de-embrittlement process, known as low hydrogen annealing or "baking", is used to overcome the weaknesses of methods such as electroplating which introduce hydrogen to the metal, but is not always entirely effective because a sufficient time and temperature must be reached.[33] Tests such as ASTM F1624 can be used to rapidly identify the minimum baking time (by testing using design of experiments, a relatively low number of samples can be used to pinpoint this value). Then the same test can be used as a quality control check to evaluate if baking was sufficient on a per-batch basis.
如果金属尚未开始开裂,可以通过去除氢源并使金属内的氢通过热处理扩散出来来逆转氢脆。这种去脆化工艺,称为低氢退火或“烘烤”,用于克服电镀等方法的弱点,这些方法将氢引入金属,但并不总是完全有效,因为必须达到足够的时间和温度。 [33] ASTM F1624 等测试可用于快速确定最短烘烤时间(通过使用实验设计进行测试,可以使用相对较少的样品数量来确定该值)。然后,可以使用相同的测试作为质量控制检查,以评估每批烘焙是否足够。

In the case of welding, often pre-heating and post-heating the metal is applied to allow the hydrogen to diffuse out before it can cause any damage. This is specifically done with high-strength steels and low alloy steels such as the chromium/molybdenum/vanadium alloys. Due to the time needed to re-combine hydrogen atoms into the hydrogen molecules, hydrogen cracking due to welding can occur over 24 hours after the welding operation is completed.
在焊接的情况下,通常会对金属进行预热和后加热,以使氢气在造成任何损坏之前扩散出去。这是专门用高强度钢和低合金钢(如铬/钼/钒合金)完成的。由于将氢原子重新结合到氢分子中需要时间,因此在焊接操作完成后 24 小时内可能会发生焊接引起的氢裂纹。

Another way of preventing this problem is through materials selection. This will build an inherent resistance to this process and reduce the need of post processing or constant monitoring for failure. Certain metals or alloys are highly susceptible to this issue, so choosing a material that is minimally affected while retaining the desired properties would also provide an optimal solution. Much research has been done to catalog the compatibility of certain metals with hydrogen. [24] Tests such as ASTM F1624 can also be used to rank alloys and coatings during materials selection to ensure (for instance) that the threshold of cracking is below the threshold for hydrogen-assisted stress corrosion cracking. Similar tests can also be used during quality control to more effectively qualify materials being produced in a rapid and comparable manner.
防止此问题的另一种方法是通过材料选择。这将对这一过程产生固有的阻力,并减少后处理或持续监控故障的需要。某些金属或合金极易受到此问题的影响,因此选择一种受影响最小的材料,同时保留所需性能也将提供最佳解决方案。已经进行了大量研究来对某些金属与氢的相容性进行分类。 [24] ASTM F1624 等测试也可用于在材料选择过程中对合金和涂层进行排名,以确保(例如)开裂阈值低于氢辅助应力腐蚀开裂的阈值。在质量控制过程中也可以使用类似的测试,以更有效地鉴定以快速和可比的方式生产的材料。

Surface Coatings 表面涂层

Coatings act as a barrier between the metal substrate and the surrounding environment, hindering the ingress of hydrogen atoms. These coatings can be applied through various techniques such as electroplating, chemical conversion coatings, or organic coatings. The choice of coating depends on factors such as the type of metal, the operating environment, and the specific requirements of the application.
涂层充当金属基材与周围环境之间的屏障,阻止氢原子进入。这些涂层可以通过各种技术应用,例如电镀、化学转化涂层或有机涂层。涂层的选择取决于金属类型、操作环境和应用的具体要求等因素。

Electroplating is a commonly used method to deposit a protective layer onto the metal surface. This process involves immersing the metal substrate into an electrolyte solution containing metal ions. By applying an electric current, the metal ions are reduced and form a metallic coating on the substrate. Electroplating can provide an excellent protective layer that enhances corrosion resistance and reduces the susceptibility to hydrogen embrittlement.
电镀是在金属表面沉积保护层的常用方法。该过程涉及将金属基板浸入含有金属离子的电解质溶液中。通过施加电流,金属离子被还原并在基材上形成金属涂层。电镀可以提供优良的保护层,增强耐腐蚀性并降低对氢脆的敏感性。

Chemical conversion coatings are another effective method for surface protection. These coatings are typically formed through chemical reactions between the metal substrate and a chemical solution. The conversion coating chemically reacts with the metal surface, resulting in a thin, tightly adhering protective layer. Examples of conversion coatings include chromate, phosphate, and oxide coatings. These coatings not only provide a barrier against hydrogen diffusion but also enhance the corrosion resistance of the metal.
化学转化涂层是另一种有效的表面保护方法。这些涂层通常是通过金属基材和化学溶液之间的化学反应形成的。转化涂层与金属表面发生化学反应,形成一层薄而紧密的保护层。转化涂层的示例包括铬酸盐、磷酸盐和氧化物涂层。这些涂层不仅提供了防止氢扩散的屏障,而且还增强了金属的耐腐蚀性。

Organic coatings, such as paints or polymer coatings, offer additional protection against hydrogen embrittlement. These coatings form a physical barrier between the metal surface and the environment. They provide excellent adhesion, flexibility, and resistance to environmental factors. Organic coatings can be applied through various methods, including spray coating, dip coating, or powder coating. They can be formulated with additives to further enhance their resistance to hydrogen ingress.
有机涂层,如油漆或聚合物涂层,提供额外的保护,防止氢脆。这些涂层在金属表面和环境之间形成物理屏障。它们具有出色的附着力、柔韧性和耐环境因素。有机涂料可以通过多种方法应用,包括喷涂、浸涂或粉末涂料。它们可以用添加剂配制,以进一步增强其对氢气侵入的抵抗力。

Thermally sprayed coatings offer several advantages in the context of hydrogen embrittlement prevention. The coating materials used in this process are often composed of materials with excellent resistance to hydrogen diffusion, such as ceramics or cermet alloys. These materials have a low permeability to hydrogen, creating a robust barrier against hydrogen ingress into the metal substrate.[34]
热喷涂涂层在防止氢脆方面具有多种优势。该工艺中使用的涂层材料通常由具有优异抗氢扩散性的材料组成,例如陶瓷或金属陶瓷合金。这些材料对氢的渗透性较低,可形成坚固的屏障,防止氢气进入金属基材。 [34]

附一个可能有用的文档, NASA对氢脆的调查,英文的: Hydrogen Embrittlement - NASA Technical Reports Server (NTRS), 还有SANDIA实验室的报告

attachment icon 20160005654.pdf 2.03MB PDF 25次下载 预览

attachment icon SAND2012_7321.pdf 6.06MB PDF 32次下载 预览


文号 / 927739

浪迹天涯
名片发私信
学术分 0
总主题 2 帖总回复 10 楼拥有证书:进士 机友
注册于 2021-12-11 17:37最后登录 2024-01-05 11:28
主体类型:个人
所属领域:无
认证方式:手机号
IP归属地:吉林

个人简介

暂未填写
文件下载
加载中...
{{errorInfo}}
{{downloadWarning}}
你在 {{downloadTime}} 下载过当前文件。
文件名称:{{resource.defaultFile.name}}
下载次数:{{resource.hits}}
上传用户:{{uploader.username}}
所需积分:{{costScores}},{{holdScores}}下载当前附件免费{{description}}
积分不足,去充值
文件已丢失

当前账号的附件下载数量限制如下:
时段 个数
{{f.startingTime}}点 - {{f.endTime}}点 {{f.fileCount}}
视频暂不能访问,请登录试试
仅供内部学术交流或培训使用,请先保存到本地。本内容不代表科创观点,未经原作者同意,请勿转载。
音频暂不能访问,请登录试试
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

插入资源
全部
图片
视频
音频
附件
全部
未使用
已使用
正在上传
空空如也~
上传中..{{f.progress}}%
处理中..
上传失败,点击重试
等待中...
{{f.name}}
空空如也~
(视频){{r.oname}}
{{selectedResourcesId.indexOf(r.rid) + 1}}
处理中..
处理失败
插入表情
我的表情
共享表情
Emoji
上传
注意事项
最大尺寸100px,超过会被压缩。为保证效果,建议上传前自行处理。
建议上传自己DIY的表情,严禁上传侵权内容。
点击重试等待上传{{s.progress}}%处理中...已上传,正在处理中
空空如也~
处理中...
处理失败
加载中...
草稿箱
加载中...
此处只插入正文,如果要使用草稿中的其余内容,请点击继续创作。
{{fromNow(d.toc)}}
{{getDraftInfo(d)}}
标题:{{d.t}}
内容:{{d.c}}
继续创作
删除插入插入
插入公式
评论控制
加载中...
文号:{{pid}}
加载中...
详情
详情
推送到专栏从专栏移除
设为匿名取消匿名
查看作者
回复
只看作者
加入收藏取消收藏
收藏
取消收藏
折叠回复
置顶取消置顶
评学术分
鼓励
设为精选取消精选
管理提醒
编辑
通过审核
评论控制
退修或删除
历史版本
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}
ID: {{user.uid}}