简易校准可以用六个位置的方法,3d打印一个测试工装,6个面各朝下放置一次。
高级校准可以把模块塞进一个球,并且加配重增加质量,以减小振动加速度。缓慢滚动这个球,加速度矢量和应该不变。
ChatGPT提问:
a=vector(3), scale=vector(3), offset=vector(3) b=(a-offset).*scale, norm(a)=1, solve offset and scale from b b is in a csv file, use python curve_fit to find out b
回答:
To use Python's `curve_fit` function to solve for `offset` and `scale` from `b`, we first need to define a function that takes `a`, `offset`, and `scale` as inputs and returns the value of `b`. We can do this using the NumPy library, which provides efficient array operations. Here's an example implementation: ```python import numpy as np from scipy.optimize import curve_fit def func(a, offset, scale): return (a - offset) * scale # Load b from a CSV file b = np.loadtxt('b.csv', delimiter=',') # Define initial guesses for offset and scale offset_guess = np.zeros(3) scale_guess = np.ones(3) # Define bounds for offset and scale (optional) offset_bounds = (-np.inf, np.inf) scale_bounds = (0, np.inf) bounds = (offset_bounds, scale_bounds) # Use curve_fit to solve for offset and scale popt, pcov = curve_fit(func, a, b, p0=(offset_guess, scale_guess), bounds=bounds) # Extract the optimized values of offset and scale offset_opt = popt[0] scale_opt = popt[1] # Print the optimized values print('Optimized offset:', offset_opt) print('Optimized scale:', scale_opt) ``` In this example, we first load `b` from a CSV file using NumPy's `loadtxt` function. We then define a function `func` that takes `a`, `offset`, and `scale` as inputs and returns the value of `b`. We use `curve_fit` to optimize the values of `offset` and `scale` that minimize the difference between the actual values of `b` and the values of `b` predicted by `func`. We provide initial guesses for `offset` and `scale` using the `p0` argument, and we set bounds on `offset` and `scale` using the `bounds` argument. Finally, we extract the optimized values of `offset` and `scale` from the `popt` array.
时段 | 个数 |
---|---|
{{f.startingTime}}点 - {{f.endTime}}点 | {{f.fileCount}} |