首先是对描述飘升机原理的理论中,在下最推崇的离子漂流理论的阐述和翻译。
以下是维基百科界面相关内容截图和翻译内容(*号为鄙人注)
工作原理:
离子态的气体推进是一种基于电能制造流动气体的技术,无需任何*(主要的)活动部件。因此,它经常被描述为一种”固体“推进设备。对它原理的解释基于电流体力学。
在它最基本的形态中,主要由两个平行的导电电极,也就是发射极和接受极,组成。当这一设备被通上高压电(击穿电压范围内),发射极*(的强电场)电离了空气中的原子,并将它加速到接受极,产生了反应中的推力。在离子被推到接受极的过程中,离子云裹挟了中性的未电离分子继而也加速了这一部分分子。
当离子或被阳极、或被阴极的场作用时,这种效应并不直接依赖于电场极性。颠倒电极的方向并不会改变推力的方向,因为它在与此同时也颠倒了*(与接受极)匹配的离子的极性*(或原子核或电子)。不论如何,推力会在同一方向产生。对于阳极作为发射极而言,氮原子是主要的载流子;对于阴极作为发射极而言,氧离子是主要的载流子,而也显著增加了臭氧的生成量。*(译者也深受其熏害)
EHD(Electrohydrodynamics)引擎的效率比传统引擎低得多。
和电推火箭引擎不同,电流体原理并不适用于真空。
电流体力学:
EHD设备产生的推力是别费尔德-布朗效应的例子,并可以对希尔-朗缪尔方程稍作修改得到。一个笼统的一维处理可以给出下式:
F=Id/k
注释:
F是最终推力
I是电流
d是气隙宽度
k是流体的离子迁移系数,国际单位制中以amp-sec2/kg作为单位(空气在名义上的此数值是2*10-4m2V-1s-1)
如果在应用中使用的是诸如空气的气体,那么这种原理也可以以电空气动力学(EAD)查阅到。
当离子殷勤被启动时,冕栅*(corona wire 指发射极,如本作中的铜丝)被加以强电压,通常是20KV到50KV。当冕栅被施加到大约30KV的电压时,它使得它附近的空气分子被以剥离电子的形式电离。此时,这些离子被阳极排斥*(此处作者默认发射极是阳极),并冲向接受极。这种离子的连续平均速度被术语称为漂流速度。这一速度取决于电极间的平均自由程,外部电场强度,以及离子和中性空气*(介质)粒子的质量。
事实上,电流被冠状排出体携带,这同时也意味着运动的粒子会弥漫为一种离子云,并且频繁的与空气分子碰撞。就是这种碰撞制造了推力。离子云的冲量被均匀的分散到了与他们碰撞的中性空气分子上,而且,因为它们是中性的,它们不会迁移到另外一个电极。正相反,它们会保持原来的运动方向,产生中性风。当这些中性分子从离子引擎种发射出去后,它们遵循了牛顿第三定律,产生了大小相等、方向相反的力,所以,离子引擎获得了方向相反的等量力。这种力的大小和温柔的呼吸相当。最终的推力取决于其它的外部因素,包括了气压、气温、气体成分、电压、湿度,以及气隙宽度。
电极间的空气质量被处于高速漂流中的积极原子反复影响。引起了必须被克服的电抗。在这个过程中最终被逮住的中性空气非常高效的交换了冲量因此产生了推力。空气越重越粘稠,推力就越大。
飞行器搭配
在传统的推力反应应用中,EAD推力可能会直接用于平行放置和驱动固定翼飞机或垂直的抬升动力举升飞行器,也就是“飘升机”。
时段 | 个数 |
---|---|
{{f.startingTime}}点 - {{f.endTime}}点 | {{f.fileCount}} |