Q:驱动IGBT的时候,为了减小损耗,一定要尽可能让上升/下降沿最小化吗?
A:其实这种说法长期存在于高压爱好者的社区中。从硬开关的角度来考虑,上升/下降沿的时间长短。
能够直接影响电流/电压交叠区的伏安乘积大小。如下图是经典硬开关的损耗图。
在这种情况下,当然是开通速度和截止速度要做到尽可能的快。但是对于一些工业领域并非如此。
我甚至见过在10KW的交流逆变弧焊机的驱动电路上面,看到过在栅极并联10nF电容来延缓下降沿的做法。
这是为什么呢?拿大家喜闻乐见的劳模50UD来打比方,IRG4PC50UD是一个IGBT的型号。
这是他参数表中的一个参数
这是桥式电路中,UD中的那个Diode能容许的最大电流上升率。
一般这个D都是起到为感性负载续流的作用,而在软开关应用中,它负责死区时间的换向。
而且仔细的爱好者能够发现,DRSSTC关断后,电压并不是立即消失的。原因很简单。
这是因为LC系统中的能量,通过D对电容进行反向续流,馈回至母线电容的原因。
而DRSSTC动辄几百A的电流,也是要经过这个D的。所以截止/开通时间与这个电流的关系非常容易理解。
DRSSTC不经过仔细移相,其开关管实际上是在强行硬开关10~20A左右的电流。这个时候电感储能全部通过D馈回。
而很多时候,栅极驱动能做到100nS左右,这样一来,上升率就已经约等于100~200A/uS了,接近于极限值。
一旦发生开关时序错误,或者Ipk增加,随时都有可能超过这个极限,所以有时候驱动波形很漂亮,DR更爱炸的话。可以考虑是否为驱动波形上升/下降沿太快带来的问题。
回到逆变焊机的问题上,其既有过EMI认证方面的原因,同样也是由于在软开关下,即使驱动波形边沿较为平缓,电压/电流交叠区的损耗也并不大。
栅极并电容的做法实际上是在系统鲁棒性/损耗上做了一个平衡。这是很成熟的做法,值得DRSSTC的爱好者们借鉴。
所以这就是为什么再强的驱动,也难避免一次错误的逻辑操作失去软开关状态带来的毁灭性后果的原因了。
引申知识:现代IGBT已经有“软恢复二极管”内置的型号,其特性为能够在同样的开关时间,减缓电流上升率。