楼主的困惑在于“无限个比0大的数字之和为什么不是无限大”。
答案先说:有时无限大,有时不是无限大。
解释在此:如果这一系列的数字都是像1,12,0.5,8.9.......等等“普通数字”,它们的和确实是无限大。
但是,如果给这组数字设定一个规律:后一个数总是比前一个小但始终不小于0,例如楼主给出的递减等比数列1,1/2,1/4,1/8...,那么把它们按顺序相加,每加一个数字,总和的增幅就会变小1次,并最终趋向于0。而所谓无限大,必须大于任何具体的数值,然而上述增幅逐渐变0的总和,只要将某一次的增幅人为地改大(比如说1/128改为1/64),就能得到一个比原来的总和更大的数字,可见原来的总和并不是真正的无限大。
打个不太精确的比方:油门踩到底,车速也有个上限,因为加速度是逐渐变小最后趋向0的。
上面说这一通,其实就是楼主将要学到的关于极限的概念(或者已经学到了?)然后教材会从极限引出微分,再引出积分。现在不明白不要紧,大部分人学完微积分都不会明白什么是极限的,这玩意更重要的是“怎么用”,而非“是什么”。