已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也
本帖最后由 hsieh 于 2013-10-27 17:01 编辑

這種設計已經有了,稱為channel wing aircraft

轉自維基

Channel_wing_aircraft.png
640px-Custer_CCW-5_N5855V_(rear)_MAAM_Reading_PA_27.04.04R_edited-2.jpg
640px-Antonov_Izdeliye_181.jpg


Channel wing
From Wikipedia, the free encyclopedia


The channel wing is an aircraft wing principle developed by Willard Ray Custer in the 1920s. The most important part of the wing consists of a half-tube with an engine placed in the middle, driving a propeller placed at the rear end of the channel formed by the half-tube.

In 1925, Willard Custer had himself observed how very strong winds had managed to lift the roof of a barn. Custer realized it was the high velocity of the wind that created this suction, even when the barn itself was obviously not moving. He started studies into this phenomenon, and by 1928 he had made the first models of a wing with a half-tube-formed section instead of the usual wing profile. This was patented in 1929. Development of the half-tube channel wing was then refined further, and on November 12, 1942, the CCW-1 (Custer Channel Wing 1) airplane was flying for the first time. Custer built additional experimental aircraft; the last one was CCW-5, of which a few were manufactured in 1964.
Functional principle[edit]



Sketch of channel wing (seen from front)
Custer's summary of his invention was that the key to the lift created by a wing is the velocity of the stream of air passing over the wing, not the velocity of the airplane itself: It's the speed of air, not the airspeed!
A wing functions because the air over the wing has a lower pressure than the air under it. The conventional aircraft must reach a significant minimum speed before this pressure differential become large enough that it generates sufficient lift to become airborne.
In Custer's channel wing the rotating propeller will direct a stable stream of air backwards through the channel. A propeller will at the low pressure side normally be supplied by air from all directions. Since the half-tube prevents air from being drawn from below, the air will be sucked through the channel instead. This creates a strong low pressure area in the channel, which again generates a lift.
Applications and limitations[edit]

The layout was for a long time not successfully proven in an aircraft, even though Custer showed theoretically and experimentally that the principle was capable of vertical flight. Since they were built with conventional rudders needing some minimum airspeed to be functional, none of the aircraft designed by Custer were capable of full vertical takeoff, but instead were characterized as STOL (short takeoff and landing). The required runway for takeoff was very short, however, 200 feet (61 m) for the CCW-1, 66 feet (20 m) for the CCW-2, with a take off speed of as low as 20 miles per hour (32 km/h). Full vertical takeoff is theoretically feasible, but would require additional modifications and means of control.
Custer investigated both aircraft with pure channel wings as well as aircraft with additional conventional wings located outside of the channels. The construction functions very well at relatively low speeds. At higher speeds, at high propeller RPM, oscillations would occur in the areas around the propeller, causing increased noise as well as creating long term destructive vibrations in the structure.
The twin engine layout featuring two channel wing features, was the most tested configuration. The twin layout had a higher risk of loss of control during a single engine failure situation, and required very high nose up attitude for STOL flight compared to conventional twin engine aircraft.[1]
Two of Custer's CCW aircraft survive. The CCW-1 is located at the Smithsonian′s National Air & Space Museum in Suitland, Maryland. The CCW-5, which was based on the Baumann Brigadier executive aircraft, is exhibited at the Mid-Atlantic Air Museum in Pennsylvania.
Later, research performed by NASA concluded that the advantage in lift and field length performance achieved did not offset the layout's many deficiencies in climb and high speed ability, and problems meeting certification requirements for general aviation.[2] The main issue is that the semi-circular beam wing configuration incurs increased profile drag and weight penalties over a conventional wing of the same lifting planform, and a common straight wing could provide almost the equivalent lift enhancement when exposed to the same slipstream induced increased dynamic pressure.
Hybrid Channel Wing[edit]
From 1999-2004 A joint research project led by Georgia Institute of the Technology Research Institute in Atlanta was funded by Langley Research Center. Aircraft were tested using channel wing principle layouts with circulation control devices that leveraged the Coandă effect. Performance of the wing was increased, and angle of attack was lowered, reducing some of the drawbacks of the design. The resultant design has been patented.[3] Channel_wing_aircraft.png
640px-Custer_CCW-5_N5855V_(rear)_MAAM_Reading_PA_27.04.04R_edited-2.jpg
640px-Antonov_Izdeliye_181.jpg
文号 / 650927

十步芳草
名片发私信
学术分 0
总主题 42 帖总回复 91 楼拥有证书:进士 笔友
注册于 2010-11-19 08:02最后登录 2016-09-11 17:03
主体类型:个人
所属领域:无
认证方式:邮箱
IP归属地:未同步

个人简介

水人一枚

文件下载
加载中...
{{errorInfo}}
{{downloadWarning}}
你在 {{downloadTime}} 下载过当前文件。
文件名称:{{resource.defaultFile.name}}
下载次数:{{resource.hits}}
上传用户:{{uploader.username}}
所需积分:{{costScores}},{{holdScores}}下载当前附件免费{{description}}
积分不足,去充值
文件已丢失

当前账号的附件下载数量限制如下:
时段 个数
{{f.startingTime}}点 - {{f.endTime}}点 {{f.fileCount}}
视频暂不能访问,请登录试试
仅供内部学术交流或培训使用,请先保存到本地。本内容不代表科创观点,未经原作者同意,请勿转载。
音频暂不能访问,请登录试试
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

插入资源
全部
图片
视频
音频
附件
全部
未使用
已使用
正在上传
空空如也~
上传中..{{f.progress}}%
处理中..
上传失败,点击重试
等待中...
{{f.name}}
空空如也~
(视频){{r.oname}}
{{selectedResourcesId.indexOf(r.rid) + 1}}
处理中..
处理失败
插入表情
我的表情
共享表情
Emoji
上传
注意事项
最大尺寸100px,超过会被压缩。为保证效果,建议上传前自行处理。
建议上传自己DIY的表情,严禁上传侵权内容。
点击重试等待上传{{s.progress}}%处理中...已上传,正在处理中
空空如也~
处理中...
处理失败
加载中...
草稿箱
加载中...
此处只插入正文,如果要使用草稿中的其余内容,请点击继续创作。
{{fromNow(d.toc)}}
{{getDraftInfo(d)}}
标题:{{d.t}}
内容:{{d.c}}
继续创作
删除插入插入
插入公式
评论控制
加载中...
文号:{{pid}}
加载中...
详情
详情
推送到专栏从专栏移除
设为匿名取消匿名
查看作者
回复
只看作者
加入收藏取消收藏
收藏
取消收藏
折叠回复
置顶取消置顶
评学术分
鼓励
设为精选取消精选
管理提醒
编辑
通过审核
评论控制
退修或删除
历史版本
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}
ID: {{user.uid}}