我为什么说铜损呢,其目的就是因为他是电磁发射中占比最大的,当然对于磁阻式还有铁损,但通过分层或变换结构,铁损可以控制,可以降低。可是铜损却不能,对于一个固定的电磁发射系统来讲,在电流一定时它基本上是一个固定值,要想降低它,只能通过减少开通的时间来降低铜损,而减少时间只能是弹丸速度变高了,才能做到。这就是我论点中速度提高了效率也会跟着提高的基本理念!至于磁损,我还没在电磁发射文献中看到过,如果是变压器你是指铁磁物质的磁滞回线造成的损耗,还是电磁发射中的电磁波空间耗散损耗,不过这两种损耗的占比都很小,也可控,在实际电磁发射中恐怕都是被忽略的,何况是理论计算。
另外我告诉你,磁场是能量,可以封闭在无电阻(或电阻极小)的线圈(也即电感)回路中长时间存在,就像电场也是能量,可以封闭在电阻无穷大(或电阻极大)的电容内长时间存在,要想让它们消失,对于磁能,可以通过互感进行机电转换(变压器虽然不会动但本质也是机电转换器件)。说到这儿,要说的是,在磁回路中磁通经过磁阻(比如空气)并不消耗能量,这和电回路中电流经过电阻会发热而产生损耗是截然不同的,不要搞错了。即使在互感过程中磁耦合不高(不论是磁回路中磁阻较大,还是初级线圈的磁力线不能完全穿过次级线圈,除了次级线圈通过磁耦合接收到的能量,因为磁耦合不高而剩余的磁能还在初级线圈内存在,不会消失的。这就像一个制作良好的变压器,不会因为次级开路,就损失很多能量,这时候变压器就相当于一个独立的电感,无功损耗很大,但有功损耗是很小的,就像一个制作良好的电容直接串入交流电源中,真正介质发热造成的有功损耗是很小的。当然了,对于变压器来讲,提高磁耦合肯定是能提高效率的,最大的好处还是降低成本,减小体积,实际使用中(除了一些特殊应用),谁也不会把变压器搞得磁耦合很低,却为了追求高效率,而大幅度增加变压器的线圈线径及体积。
那么提高频率,在磁耦合很低的情况下是如何提高效率的呢?这是因为提高频率,对于一个空心电感来说,感抗会增加,这个大家都知道。在输入同样电压,低频下工作,电感回路中电流比高频下大,也即铜损大。如果这是在它的附近增加一个次级空心线圈,就形成了一个变压器。这样大家就明白了,在同样的输入电压同样的输出功率情况下,提高频率,在同样感抗下,可以减少初次级的圈数,也即在同样输出功率下降低铜损,提高效率。同理,提高频率在不降低效率、不降低输出功率的情况下也可大幅度减小变压器体积。
楼上的,讲的这么细,你也该明白了吧!