第五章 对德尔勃留克模型的讨论和检验
确实的,正如光明显出了它自身,也显出了黑暗一样,于是,真理是它自身的标准,也是谬误的标准。
——斯宾诺莎《伦理学》第二部分,命题43
40. 遗传物质的一般图景
根据这些事实,可以很简单地回答我们的问题,就是说:由少量原子组成的这些结构,能否长时间地经受住象遗传物质不断受到的那种热运动的干扰影响?我们将假定一个基因的结构是一个巨大的分子,只能发生不连续的变化,这种变化是在于原子的重新排列并导致一种同分异构的分子。这种重新排列也许只影响到基因中的一小部分区域,大量的各种不同的重新排列也许是可能的。从任何可能的同分异构体中,把实际的构型分离出来的阈能一定是很高的(这是同一个原子的平均热能相比),以致使这种变化成为一种罕有事件。这种罕有事件我们认为就是自发突变。
本章的以后几部分将致力于检验基因和突变的一般描述(主要应归功于德国物理学家M.德尔勃留克),把它同遗传学事实作详细的比较。在此之前,我们可以对这一理论的基础和一般性质适当地作些评论。
41. 图景的独特性
为生物学问题去穷根究底,并把图景建立在量子力学的基础之上,这是绝对必要的吗?基因是一个分子,这样的猜测,我敢说,在今天已是老生常谈了。不管他是不是熟悉量子论,不同意这种猜测的生物学家是很少的了。在第32节中,我们大胆地适用了量子论问世以前的物理学家的语言,作为观察到的不变性的唯一合理的解释。随后是关于同分异构性,阈能,W:kT在决定同分异构体变化几率中的重要作用等因素的理由——所有这一切理由,都可以在纯粹经验的基础上很好地加以说明;不管怎样,反正都不是来源于量子论的。既然在这本小册子里,我不能真正地把它讲清楚,而且还可能使许多读者感到厌烦,那我为什么还要如此强烈地坚持量子力学的观点呢?
量子力学是根据一些最好的原理来说明自然界中实际碰到的、原子的各种集合体的第一个理论方法。海特勒-伦敦键是这个理论的一个独特的特点,但是这个理论并不是为了解释化学键而发明的。它是以一种十分有趣而且费解的方式出现的,是根据完全不同的理由强加给我们的。现已证明,这个理论同观察到的化学事实是十分吻合的,而且,正如我所说的,这是一个独特的特点,由于对这个特点有足够的了解,所以可以相当肯定地说,在量子论的进一步发展中,“不可能再发生这样的事情了”。
因此,我们可以满有把握地断言,除了遗传物质的分子解释外,不再有别的解释了。在物理学方面不再有别的可能性可以解释遗传物质的不变性。如果德尔勃留克的描述是不管用的,那么,我们将不得不放弃作进一步的尝试。这是我想说明的第一点。
42. 一些传统的错误概念
但是,也许可以问:除了分子以外,难道真的就没有由原子构成的、其他的可以持久的结构了吗?比如,埋在坟墓里一、二千年的一枚金币,难道不是保留着印在它上面的人像的模样吗?这枚金币确实是由大量原子构成的,但在这个例子中,我们肯定不会把这种形象的保存归因于巨大数字的统计。这种说法同样也适用于我们发现蕴藏在岩石里的、经过几个地质时代而没有发生变化的一批明莹的晶体。
这就引出了我要说明的第二点。一个分子,一个固体,一块晶体的情况并没有真正的差别。从现代的知识来看,它们实质上是相同的。不幸的是,学校的教学中还保持着好多年前就已过时了的传统观念,从而模糊了对实际事态的了解。
其实,我们在学校里学到的有关分子的知识,并没有讲到分子对固态的相似程度比对液体或气态更为接近的观点。相反,教给我们的是要仔细地区分物理变化和化学变化;物理变化如熔化或蒸发,在这种变化中,分子是保持着的(比如酒精,不管它是固体、液体还是气体,总是由相同的分子C2H6O组成的)。化学变化如酒精的燃烧,在那里,一个酒精分子同三个氧分子经过重新排列生成了二个二氧化碳分子和三个水分子。
关于晶体,我们学到的是它们形成了周期性的三向堆叠的晶格,晶格里的单个分子的结构有时是可以识别的,酒精和许多有机化合物就是如此;在其他的晶体中,比如岩盐(氯化钠,NaCl),氯化钠分子是无法明确地区分界限的,因为每个钠原子被六个氯原子对称地包围着,反过来也是如此;所以说,如果有钠氯原子对的话,那么,不管哪一对都可以看作是氯化钠分子的组成。
最后,我们还学到,一个固体可以是晶体,也可以不是晶体,后一种情况,我们称之为无定形的固体。
43. 物质的不同的“态”
目前,我还没有走得那么远,想把所有这些说法和区别都说成是错误的。它们在实际应用中往往是有用的。但在物质结构的真实性方面,必须用完全不同的方法划清一些界限。基本的区别在下面的“等式”的等号之间:
分子=固体=晶体
气体=液体=无定形的固体
对这些说法,我们必须作简要的说明。所谓无定形的固体,要么不是真正的无定形,要么不是真正的固体。在“无定形的”木炭纤维里,X射线已经揭示出石墨晶体的基本结构。所以,木炭是固体,但也是晶体。在我们还没有发现晶体结构的地方,我们必须把它看作是“粘性”(内摩擦)极大的一种液体。这样一种没有确定熔化温度和熔化潜热的物质,表明它不是一种真正的固体。将它加热时,它逐渐地软化,最后液化而不存在不连续性(我记得在第一次世界大战末期,在维也纳曾经有人给我们象沥青那样的东西作为咖啡的代用品。它是这么硬,必须在它出现光滑的贝壳似的裂口时,用凿子或斧头把它砸成碎片。可是,过一段时间后,它会变成液体,如果你很蠢地把它搁上几天,它就会牢牢地粘在容器的底部)。
气态和液体的连续性是非常熟悉的事情。可以用“围绕”所谓临界点的方法,使任何一种气体液化,也就没有什么不连续性。但这个问题我们在这里不准备多谈了。
44. 真正重要的区别
这样,上述图式中除了主要之点外,我们都已证明是有道理的;这个主要之点就是我们想把一个分子看成是一种固体=晶体。
这一点的理由是,把一些原子,不管它有多少,结合起来组成分子的力的性质,同把大量原子结合起来组成真正的固体——晶体的力的性质是一样的。分子表现出同晶体一样的结构稳固性。要记住,我们正是从这种稳固性来说明基因的不变性的!
物质结构中真正重要的区别在于原子是不是被那种“起稳固作用的”海特勒-伦敦力结合在一起。在固体中和在分子中,原子是这样结合的。在单原子的气体中(比如水银蒸气),它们就不是那样了。在分子组成的气体中,只是在每个分子中,原子才是以这种方式结合在一起的。
45. 非周期性的固体
一个很小的分子也许可以称为“固体的胚”。从这样一个小的固体胚开始,看来可以有两种不同的方式来建造愈来愈大的集合体。一种是在三个方向上一再重复同一种结构的、比较乏味的方式。这是一个正在生长中的晶体所遵循的方式。周期性一旦建立后,集合体的大小就没有一定的限度了。另一种方式不用那种乏味的重复的图样,而是建造愈来愈扩大的集合体。那就是愈来愈复杂的有机分子,这种分子里的每一个原子,以及每一群原子都起着各自的作用,跟其他的原子起的作用(比如在周期性结构里的原子)是不完全相同的。我们可以恰当地称之为一种非周期性的晶体或固体,并且可以用这样的说法来表达我们的假说:我们认为,一个基因——也许是整个染色体纤丝——是一种非周期性的固体。
46. 压缩在微型密码里的内容的多样性
经常会碰到这样的问题:象受精卵细胞核这样小的物质微粒,这么能包含了涉及有机体未来的全部发育的精细的密码正本呢?一种赋予足够的抗力来永久地维持其秩序的、秩序井然的原子结合体,看来是一种唯一可以想象的物质结构,这种物质结构提供了各种可能的(“异构的”)排列,在它的一个很小的空间范围内足以体现出一个复杂的“决定”系统。真的,在这种结构里,不必有大量的原子就可产生出几乎是无限的可能的排列。为了把问题讲清楚,就想到了莫尔斯密码。这个密码用点(“?”)、划(“-”)两种符号,如果如果每一个组合用的符号不超过四个,就可以编成三十种不同的代号。现在如果你在点划之外再加上第三种符号,每一个组合用的符号不超过十个,你就可以编出88572个不同的“字母”;如果用五种符号,每一个组合用的符号增加到25个,那编出的字母可以有37529846191405个。
可能有人会不同意,他们认为这个比喻是有缺点的,因为莫尔斯符号可以有各种不同的组合(比如,?--和??-)因此与同分异构体作类比是不恰当的。为了弥补这个缺点,让我们从第三种情况中,只挑出25个符号的组合,而且只挑出由五种不同的符号、每种符号都是五个所组成的那种组合(就是由五个点,五个短划……等组成的组合)。粗粗地算一下,组合数是62330000000000个,右边的几个零代表什么数字,我不想化气力去算它了。
当然,实际情况决不是原子团的“每一种”排列都代表一种可能的分子;而且,这也不是任意采用什么样的密码的问题,因为密码正本本身必定是引起发育的操纵因子。可是,另一方面,上述例子中选用的数目(25个)还是很少的,而且我们也只不过设想了在一条直线上的简单排列。我们希望说明的只不过是,就基因分子的图式来说,微型密码是丝毫不错地对应于一个高度复杂的特定的发育计划,并且包含了使密码发生作用的手段,这一点已经不再是难以想象的了。
47. 与事实作比较:稳定性的程度;突变的不连续性
最后,让我们用生物学的事实同理论的描述作比较。第一个问题显然是理论描述能否真正说明我们观察到的高度不变性。所需要的阈值数量--平均热能kT的好多倍--是合理的吗?是在普通化学所了解的范围之内吗?这些问题是很寻常的,不用查表据可肯定地回答。化学家能在某一温度下分离出来的任何一种物质的分子,在那个温度下至少有几分钟的寿命(这是说得少一点,一般说来,它们的寿命要长得多)。这样,化学家碰到的阈值,必定正好就是解释生物学家可能碰到的那种不变性所需要的数量级;因为根据第36节的描述,我们会记得在大约1:2的范围内变动的阈值,可以说明从几分之一秒到几万年范围内的寿命。
为了今后的参考,我提一些数字。第36节的例子里提到的W/kT之比,是:W/kT=30,50,60,分别产生的寿命是1/10秒,16个月,30000年。在室温下,对应的阈值是0.9,1.5,1.8电子伏。必须解释一下“电子伏”这个单位,这对物理学家来说是很方便的,因为它是可以具体化的。比如,第三个数字(1.8)就是值被2伏左右的电压所加速的一个电子,将获得正好是足够的能量去通过碰撞而引起转变(为了便于作比较,一个普通的袖珍手电筒的电池有3伏)。
根据这些理由可以想象到,由振动能的偶然涨落所产生的、分子某个部分中的构型的一种异构变化,实际上是十足的罕有事件,这可以解释为一次自发突变。因此,我们根据量子力学的这些原理,解释了关于突变的最惊人的事实,正是由于这个事实,突变才第一次引起了德弗里斯的注意,就是说,突变是不出现中间形式的,而是“跃迁式”的变异。
48. 自然选择的基因的稳定性
在发现了任何一种电离射线都会增加自然突变率以后,人们也许会认为自然率起因于土壤和空气中的放射性,以及宇宙射线。可是,与X射线的结果作定量的比较,却表明“天然辐射”太弱了,只能说明自然率的一小部分。
倘若我们用热运动的偶然的涨落来解释罕有的自然突变,那么,我们就不会感到太惊奇了,因为自然界已成功地对阈值作出了巧妙的选择,这种选择必然使突变成为罕见的。因为频繁的突变对进化是有害的,这是在前几节中已经得出的结论。一些通过突变得到不很稳定的基因构型的个体,它们那些“过分频繁的”、迅速地在发生突变的后代能长期生存下去的机会是很小的。物种将会抛弃这些个体,并将通过自然选择把稳定的基因集中起来。
49. 突变体的稳定性有时是较低的
至于在我们的繁育试验中出现的、被我们选来作为突变体以研究其后代的那些突变体,当然不能指望它们都表现出很高的稳定性。因为它们还没有经受过“考验”--或者,如果说是已经受过“考验”了,它们却在野外繁殖时被“抛弃”了--可能是由于突变可能性太高的缘故。总而言之,当我们知道有些突变体的突变可能性比正常的“野生”基因要高得多的时候,我们是一点也不感到奇怪的。
50. 温度对不稳定基因的影响小于对稳定基因的影响
这一点使我们能够检验我们的突变可能性的公式:t=cEXP(W/kT)(我们还记得,t是对于具有阈能W的突变的期待时间。)我们问:t是如何随温度而变化的?从上面的公式中,我们很容易找到温度为T+10时的t值同温度为T时的t值之比的近似值=EXP(-10W/kT)。
指数是负数,比率当然小于1。温度上升则期待时间减少,突变可能性就增加。现在可以检验了,而且已经在果蝇受得了的温度范围内,用果蝇作了检验。乍看起来,这个结果是出乎意料的。野生基因的低的突变可能性明显地提高了,可是一些已经突变了的基因的较高的突变可能性却并未增加,或者说,增加很少。这种情况恰恰是我们在比较两个公式时预期到的。根据第一个公式,要想使t增大(稳定的基因)就要求W/kT的值增大;而根据第二个公式,W/kT的值增大了,就会使算出来的比值减小,就是说,突变可能性将随着温度而有相当的提高。(实际的比值大约在1/2到1/5之间。其倒数2-5是普通化学反应中所说的范霍夫因子。)
51. X射线是如何产生突变的
现在转到X射线引起的突变率,根据繁育试验我们已经推论出,第一(根据突变率和剂量的比例),一些单一事件引起了突变;第二(根据定量的结果,以及突变率取决于累积的电离密度而同波长无关的事实),为了产生一个特定的突变,这种单一事件必定是一个电离作用,或类似的过程,它又必须发生在只有大约边长10个厘米距离的立方体之内。根据我们的描述,克服阈值的能量一定是由爆炸似的过程,如电离或激发过程所供给的。我所以称它为爆炸似的过程,是因为一个电离作用花费的能量(顺便说一下,并不是X射线本身花费的,而是它产生的次级电子所耗用掉的),有30个电子伏,大家很清楚,这是相当大的。这样,在放电点周围的热运动必定是大大地增加了,并且以原子强烈振动的“热波”形式从那里散发出来。这种热波仍能供给大约10个原子距离的平均“作用范围”内所需的一、二个电子伏的阈能,这也不是不可想象的。话虽这么说,一个没有偏见的物理学家也许会预料到,存在着一个更小的作用范围。在许多情况下,爆炸的效应将不是一种正常的异构转变,而是染色体的一种损伤,通过巧妙的杂交,使得没有受到损伤的那条染色体(即第二套染色体中与受损伤的染色体对应配对的那一条),被相应位点上的基因是病态的一条染色体所替换时,这种损伤就是致死的。所有这一切,全是可以预期的,而且观察到的也确是如此。
52. X射线的效率并不取决于自发的突变可能性
其他一些特性,如果并没有象图式所预言的那样出现,那么,供给上面讲的致死损伤也就容易理解了。例如,一个不稳定的突变体的X射线突变率,平均起来并不高于稳定的突变体。现在,就拿供给30个电子伏那里的爆炸来说,所需的阈能不管是大还是小,比如说,1伏或1.3伏,你肯定不能指望30个电子伏会造成许多差别。
53. 回复突变
有些情况下,转变是从两个方向上来研究的,比如说,从一个确定的“野生”基因变到一个特定的突变体,再从那个突变体变回到野生基因。这种情况下,自然突变率有时几乎是相等的,有时却又很不相同。乍看起来,这是难以理解的,因为这两种情况下要克服的阈似乎是相等的。可是,它当然不是这种情况,因为它必须根据开始时的构型的能级来计算,而且野生基因和突变基因的能级可能是不同的。
总之,我认为德尔勃留克的“模型”是经得起检验的,我们有理由在进一步的研究中应用它。