IC菜鸟成长手记
Banner:TL051CDRA die photo Logo:NE555 die photo All from Zeptobars
文号851729
31272
6
收藏(7)

立足基础理论,灵活解释您的仿真结果,进行设计与取舍---以基于平方率的单端共源共栅放大器设计为例

现代模拟IC设计中,我们打交道最多的器件莫非MOSFET了,使用什么结构,如何给定MOSFET的参数,就是一个最重要的话题。

在现代CMOS工艺中,我们关心最多的参数:MOSFET的宽(W)和长(L)和由这两项参数构成的宽长比(W/L)。

而在0.5um及以上的工艺中,平方率方程是可以较为准确的描述MOSFET I-V特性曲线,方程如下:(饱和区,先暂时不考虑沟道长度调制效应)

$I_D=\frac12\mu_NC_{OX}\frac WL(V_{GS}-V_{TH})^2$

而式中uN×Cox可以简化为系数KN,(VGS-VTH)可以以过驱动电压VOD代替,简化方程如下:

$I_D=\frac12 K_N\frac WLV_{OD}^2$

在MOSFET小信号模型中,非常值得关注的参数是MOSFET的跨导gm和输出电阻ro,公式如下:

$g_m=\frac{I_D}{V_{GS}}=\mu_NC_{OX}\frac WL(V_{GS}-V_{TH})=\sqrt{2\mu_NC_{OX}\frac WLI_D}=\frac{2I_D}{V_{GS}-V_{TH}}$

$r_o=\frac{\partial V_{DS}}{\partial I_D}=\frac1{{\displaystyle\frac12}\mu_NC_{OX}{\displaystyle\frac WL}V_{OD}^2\lambda}\approx\frac1{\lambda I_D}$

对于ro,我们一般使用后面的简化公式进行计算。

在MOS管共源放大器中,有重要参数--本征增益Av0,共源极放大器无论如何无法超过这个增益

$A_{v0}=g_mr_o$

而共源共栅放大器,则是依靠极大的提升输出阻抗,来提供更大的增益。

本次设计电路图如下:

选区_022.png

 已知共源共栅放大器增益为

$A_{v,Cascode}=g_{mN0}\lbrack(g_{m,N1}r_{oN1}r_{oN0})//(g_{m,P1}r_{oP1}r_{oP0})\rbrack$


无法改动的参数:KN/KP、Lambda、

写在Spec里的参数:电源电压、功耗(决定电流ID)、输出摆幅(决定了给每个管子分配多少过驱动电压)

在设计时,我们可以调节的参数:宽长比,过驱动电压

这个设计的Spec:

VDD=5V,P<=0.2mW,Av>5000,对输出摆幅和频率特性不做要求

理论介绍完毕,在下一楼中,开始正儿八经的参数提取和设计


I_D=\frac12\mu_NC_{OX}\frac WL(V_{GS}-V_{TH})^2


[修改于 6 年前 - 2018/10/28 06:28:46]

6
已屏蔽 原因:{{ notice.reason }}已屏蔽
{{notice.noticeContent}}
~~空空如也
rpg-7 作者
6年3个月前 修改于 6年3个月前 IP:四川
851730
管子参数提取&设计

参数提取部分:

下图为NMOS测试电路,以一个W/L=10/1的NMOS为例,对该管的KN,沟道长度调制系数(Lambda),体效应系数(Eta)进行计算

选区_023.png

 首先,在spectre中,导入仿真变量,进行DC-SWEEP仿真,设置输出为NM0漏极电流

ADE L (2) - TestLib TransistorTest schematic_024.png

不要忘记导入仿真参数文件(虽然先进的工艺库大多给你直接自动导入好了)

spectre1: Model Library Setup_026.png


 使用Tools->Parametric Analysis,对VGS进行仿真,仿真产生不同VGS下的VDS-ID曲线簇

Parametric Analysis - spectre(1): TestLib TransistorTest schematic _025.png

 扫描得出I-V特性曲线一张

IV.png

 


另一张重要曲线图就是给定VDS=5,扫描VGS-ID曲线,主要用于粗略得出VTH

VGS-ID.png

手工计算思路:首先选定典型IV特性曲线一条,选取饱和区的两端,计算得出KN×Lambda,将该值重新代入方程中,计算得出KN和Lambda

手工计算的结果:Lambda大约是7.14×10^-3

软件计算结果:Lambda=1/Vearly=9.91×10^-3,误差超过了20%。。。。。。。。

 还是用软件算好了。。。。。

--------------------------------------------------------------------------下面为设计部分-------------------------------------------------------------------------------------------

首先,由电源电压和功率参数,我们可以得出结论:设计整体电流<=40uA

我们砍出一半,作为这个放大器的工作电流。


观察共源共栅结构的公式,我们可以得出如下结论:


(抱歉,未完待续)

rpg-7作者
6年3个月前 修改于 6年3个月前 IP:四川
851732
诡异现象讨论,结语和参考资料列表

这层楼主要记载我是如何一步步把我自己埋在大坑中的

 通过查阅扫描得出的DC Operating Points和工艺库手册,查出两个非常有趣,和短沟道效应并不符合的现象:

选区_029.png

 

一则是据工艺库ERC手册,0.5um沟道长度的管子开通电压VTH高于20um沟道长度的管子,这不符合本人目前所知的关于短沟道的理论(短沟道效应降低VTH,DIBL效应提高了截止区漏电流)

莫非是Foundry调沟的时候调过头了?

选区_030.png

 

二则是根据导出软件计算的DC工作点,发现VGS的变化对VTH有小幅的调制作用,这个我真没整明白是怎么回事


然后根据软件导出的管子静态数据计算,计算出了一系列令我目瞪口呆的结果

attachment icon sweep.txt 86.11KB TXT 69次下载

首先是VGS-Av0的曲线,这曲线计算出的不正常的转折让我一度怀疑是不是软件计算有误

VGS-Av0.png

VGS对反型效率(gm/ID)曲线

VGS-gmID.png

 当然这些神奇的计算结果可能和错误的软件使用方式有关。这一部分,日后在书

 

非常抱歉,未完待续,我暂时肝不动了:P

 


rpg-7作者
6年3个月前 IP:四川
851763

这一层分享本人找到的一些设计资料和PDK

首先上传的是Cadence官方的GPDK,90nm和45nm,适用于教学,不针对任何Foundry,应该是可以到处分发的吧。。。

attachment icon eetop.cn_gpdk090_v3.9.rar 5.55MB RAR 85次下载

 

attachment icon gpdk045_v_2_0preRelease.7z.002 13.06MB 002 79次下载

 

attachment icon gpdk045_v_2_0preRelease.7z.001 59.00MB 001 87次下载


ucasfxxkkk
6年2个月前 IP:河北
851988

楼主,想知道你做这些用的什么软件?

还有就是第一张图的mos放大那里,两个pmos的作用是做恒流源用吗?

rpg-7作者
6年2个月前 IP:四川
851991

Cadence IC 617和 MMSIM 151

对,第一张图的两个MOS,上面的PMOS 是共源共栅电流源,下面的NMOS构成共源共栅放大器

主体信息
主体类型:个人
所属领域:无
认证方式:手机号
IP归属地:未同步
 内容统计
2021年
1 篇
2019年
2 篇
ID: {{user.uid}}
投诉或举报
加载中...
{{tip}}
请选择违规类型:
{{reason.type}}

空空如也

加载中...
回复
设为精选取消精选
评学术分
鼓励
编辑
查看历史
通过审核
移动文章
加入收藏取消收藏
退修或删除
违规记录
投诉或举报
加入黑名单移除黑名单
查看IP
{{format('YYYY/MM/DD HH:mm:ss', toc)}}
回复
加入收藏取消收藏