现在已出现用射频MOS管做的大功率固态微波发射电源了,估计精度更高了。
在工业微波和MPCVD行业中,电源通常就是指微波源。但在本文中,“电源”是指供给磁控管高压、灯丝、励磁的直流电源。“微波源”是指电源与磁控管及附属设备的组合,对外输出微波。
各位需要知道,磁控管虽然是一个“自由震荡”的器件,但是他的震荡频率和输出功率,是受磁控管的结构、老化程度、外部激励腔匹配情况、负载阻抗、温度、电源等影响的。如果其他各因素保持不变,那么磁控管的输出品质几乎就等于电源的输出质量。
因此,电源对于磁控管微波源来说,是第一重要的东西。电源稳定,微波输出就具有了稳定的基础。
在家用微波炉中,通常采用变压器经整流提供电源。不论是全波整流还是半波整流,输出的都是脉动直流,因此,磁控管的输出也是脉动的,谈不上输出品质。
对于简单的加热之类的用途,微波只是用来传递能量,品质无论多烂,只要频率没有漂移几百兆导致不匹配,就没有什么影响。
但是对于MPCVD来说,由于采用Q值较高的窄带微波系统,频率稍有抖动,就可能滑出腔体、模式转换器等的最佳工作范围,且对于电源引起的快变化,来不及通过调整匹配器(通常是三销钉)或短路面来补偿,从而使得等离子体不稳定。因此,用变压器很难满足需求,开关电源逐渐成为主流。
开关电源也有纹波。由于磁控管的工作曲线很平,很小的电压纹波就会带来极大的电流纹波。现有开关电源已经逐渐采用恒流工作,本来可以比较好的管控电流纹波,无奈电流的管控比电压难,因此通常都有比较大的电流纹波。对于MPCVD用途来说,通常要求电流纹波小于1%,电压纹波应控制在0.5%以内,两个指标都不能超出该范围。
在设计KC6201功率微波源的过程中,为了缩短开发周期,我们外购了多种开关电源。这里采用某厂适配6kW磁控管的开关电源来展示磁控管微波源的输出品质。磁控管采用东芝E3327,其余基本为KC造。
首先是微波源的监视界面,可以看到微波功率大约6kW。
接下来用传统扫描频谱仪测一下输出频谱,可以看到输出较烂,刚开机时,在大约10MHz的宽度上都有输出,用在MPCVD上显然有些勉强。
但是扫描频谱提供的信息量有限,并不能看出该源是怎么“烂”的,因此我们用KC造的实时频谱仪来看看。
这是采用峰值检波以后的结果,可以看到频谱变成了连续的,有利于准确测定实际的占用带宽。此时开机已久,宽度有所缩小,大约为4MHz。
峰值检波对刷新周期内的所有信号取峰值,能够毫无遗漏的观察频率的分布情况。但是峰值检波的时间分辨率不高于刷新频率,因此并不能反映高速变化的过程。
为了更好的反映高速变化状态,切换检波方式为“取样检波”,可以明显看出微波源的输出存在两种频率摆动,低频摆动幅度很大,在频率高端存在高频摆动。从瀑布图上可以看出,一秒之内摆动出了5个峰,因此低频摆动的频率大约为5Hz,推测为PID的时间周期,可能是该电源PID未良好收敛。
微波源的输出功率主要分布在哪些频率呢?用平均值检波能够比较好的反映平均功率谱密度,测试如下图。可见主要功率分布在频谱右侧,峰值出现在2642.2MHz附近。
为了搞清楚电源到底干了什么,我们用1:2000高压探头和专用炮灰示波器测量了电源的电压纹波。可见有一个300Hz左右的高频纹波,幅度约为80V。忘了测5Hz的低频纹波,但该高频纹波并无明显的上下晃动。推测该高频纹波是导致频谱图右侧出现频率高频摆动的原因。
我们还进行了小功率输出测试,在输出功率为3kW时,曲线爆炸,已经滑落到家用微波炉水平。
功率从3kW调整为6kW,电源缓慢升功率,能够看到升起过程中输出品质逐渐变好。
有趣的过程:
升功率.mp4 点击下载
作为对比,这张大家熟悉的图片,是KC6201微波源采用另一厂商的电源时的输出,可见频谱分布宽度仅有1MHz,也就是说,输出品质有了质的飞越,跨过了入门MPVCD的门槛。出现调频样谱线是因为这家的电源输出被高频脉冲污染。从该电源的拓扑来看,可能是因为接地处理存在设计上的缺陷,进一步提高的难度相对较小,并且对MPCVD应用其实并无妨碍。而前面那台电源,优化起来就不那么简单。
电源足够好,磁控管的输出也可以足够稳。磁控管电源和微波源输出品质优化,在工业微波应用这个水平上,算不上多难的事情,但真正把它搞明白的却屈指可数。在目前这个危机四伏的时代,更需要少忽悠、多研究,把工作做扎实。
(温馨提示:请勿询问具体是哪家的电源,欢迎交流指教)