Nozzle 3.7
Summary of Features
1) Specify nozzle geometry as either Parabolic, Conical, Bell, Imported, or Free-Form. Free-Form nozzle shapes may use up to 30 points to define nozzle geometry.
2) Standard and Import nozzle shapes may have up to 1000 axial points defining the cross-sectional area distribution of the nozzle.
3) Select either the classical isentropic and normal-shock relations method or the MacCormack backward-predictor forward-corrector finite difference method to determine characteristics of nozzle internal flow.
4) Locate internal shock waves quickly using the slider bar that displays nozzle property verses axial location in real time.
5) Determine Mach number (V/c), pressure ratio (P/P0), density ratio (R/R0) and temperature ratio (T/T0) at each axial location in the nozzle.
6) Determine shock wave location, Mach number before the shock wave, Mach number after the shock wave and nozzle area at the shock wave location.
7) Specify fluid properties for a large number of inert gases, liquid fluid rocket propellants and solid fuel rocket propellants or specify your own.
8) Specify the units of analysis as MKS (meter-newton-seconds), CGS (centimeter-newton-seconds), IPS (inch-pound-seconds) and FPS (foot-pound-seconds).
9) Enlarge all plots for easy data reduction and output all data to a color printer.
10) Easily select any plot for review and printout.
11) Fast solution - most analyses completed in less than 15 seconds.
12) Generate color contour plots for Mach number (Mn), Pressure ratio (P/P0), Temperature ratio (T/T0), and density ratio (R/R0).
13) Determine exterior flow properties in the nozzle-lip region for underexpanded nozzles and overexpanded nozzles.
14) Added a hybrid rocket motor propellant having the following fuel and oxidizer to the list of combustion gases: 85% Nitrous Oxide, 15% HTPB.
15) Made the SSME example (shown below) the start-up data for Nozzle program analyses. Data easily cleared for new data entries.
16) Two-dimensional plume analysis using the method of characteristics for underexpanded (Patm < Pexit) flow.
17) Nozzle_Examples.zip in the Nozzle directory includes 34 nozzle examples used for validation purposes.
18) Design Conditions routine for those who wish to quickly design subsonic/supersonic wind tunnels or efficient every-day nozzles
19) Added Turbulent Circular and Turbulent 2-D Free Jet analysis capability based on theory from Viscous Fluid Flow by Frank M. White
20) NEW! Display Conical nozzle geometry in Computer Aided Design (CAD) formatted LINES and CIRCLES for generating imported shapes using the Imported shape option command. Accessed by clicking File then CAD Input For Conical Shapes then SHOW NOZZLE CAD. Use these LINE and CIRCLE values in any CAD program to generate the text file required to generate a Nozzle 3.7 import geometry file.
21) NEW! For overexpanded nozzles, the value for pressure ratio (Pa/P3), Mach number (M3) and oblique shock diameter at point-2 are inserted into the 2-D Plume Analysis and the Method of Characteristics results are automatically displayed starting at the end of the external oblique shock wave pattern as illustrated in Figure-16. Previously, the plume analysis did not compute the expansion wave pattern for overexpanded nozzles. For underexpanded nozzles the value for pressure ratio (Pa/Pe), exit Mach number (Me) and nozzle exit diameter (De) are inserted and plume results automatically displayed from nozzle exit to several diameters downstream as in previous versions of Nozzle.
XXXXXXXXXXXXXXXXXXXXX/Nozzle/XXXXXXXXXml貌似功能很强大的软件
200字以内,仅用于支线交流,主线讨论请采用回复功能。